Processing math: 100%

Giải bài tập 5 trang 86 SGK Toán 12 tập 2 - Cánh diều — Không quảng cáo

Toán 12 Cánh diều


Giải bài tập 5 trang 86 SGK Toán 12 tập 2 - Cánh diều

Cho phương trình x2+y2+z24x2y10z+2=0. Chứng minh rằng phương trình trên là phương trình của một mặt cầu. Xác định tâm và bán kính của mặt cầu đó.

Đề bài

Cho phương trình x2+y2+z24x2y10z+2=0. Chứng minh rằng phương trình trên là phương trình của một mặt cầu. Xác định tâm và bán kính của mặt cầu đó.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về phương trình mặt cầu để tìm tọa độ tâm, bán kính của mặt cầu: Phương trình mặt cầu tâm I(a;b;c), bán kính R có là: (xa)2+(yb)2+(zc)2=R2.

Lời giải chi tiết

Ta có: x2+y2+z24x2y10z+2=0

x2+y2+z22.x.22.y.12.z.5+2=0

(x2)2+(y1)2+(z5)2=28.

Do đó, phương trình đã cho là phương trình mặt cầu có tâm I(2; 1; 5) và bán kính R=28=27.


Cùng chủ đề:

Giải bài tập 5 trang 63 SGK Toán 12 tập 2 - Cánh diều
Giải bài tập 5 trang 64 SGK Toán 12 tập 1 - Cánh diều
Giải bài tập 5 trang 78, 79 SGK Toán 12 tập 2 - Cánh diều
Giải bài tập 5 trang 81 SGK Toán 12 tập 1 - Cánh diều
Giải bài tập 5 trang 82 SGK Toán 12 tập 1 - Cánh diều
Giải bài tập 5 trang 86 SGK Toán 12 tập 2 - Cánh diều
Giải bài tập 5 trang 87 SGK Toán 12 tập 2 - Cánh diều
Giải bài tập 5 trang 95 SGK Toán 12 tập 2 - Cánh diều
Giải bài tập 5 trang 103 SGK Toán 12 tập 2 - Cánh diều
Giải bài tập 6 trang 8 SGK Toán 12 tập 2 - Cánh diều
Giải bài tập 6 trang 14 SGK Toán 12 tập 1 - Cánh diều