Giải mục 1 trang 105, 106 SGK Toán 11 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 11, giải toán lớp 11 kết nối tri thức với cuộc sống Bài 15. Giới hạn của dãy số Toán 11 kết nối tri thức


Giải mục 1 trang 105, 106 SGK Toán 11 tập 1 - Kết nối tri thức

Cho dãy số (left( {{u_n}} right)) với ({u_n} = frac{{{{left( { - 1} right)}^n}}}{n}) a) Biểu diễn năm số hạng đầu của dãy số này trên trục số b) Bắt đầu từ số hạng nào của dãy, khoảng cách từ ({u_n}) đến 0 nhỏ hơn 0,01?

HĐ 1

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{n}\)

a) Biểu diễn năm số hạng đầu của dãy số này trên trục số.

b) Bắt đầu từ số hạng nào của dãy, khoảng cách từ \({u_n}\) đến 0 nhỏ hơn 0,01?

Phương pháp giải:

Dựa vào công thức số hạng tổng quát tìm được 5 số hạng đầu tiên và biểu diễn trên trục số.

Lời giải chi tiết:

a) \({u_1} =  - 1;\;\;{u_2} = \frac{1}{2};\;\;\;{u_3} =  - \frac{1}{3};\;\;\;{u_4} = \frac{1}{4};\;\;\;{u_5} =  - \frac{1}{5}\).

b) Ta có: \({u_{100}} = 0,01\) suy ra bắt đầu từ số hạng thứ 101 khoảng cách từ số hạng đến 0 nhỏ hơn 0,01.

LT 1

Chứng minh rằng: \(\mathop {lim}\limits_{n \to  + \infty } \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{3^n}}}\; = 0\).

Phương pháp giải:

Ta nói dãy số \(\left( {{u_n}} \right)\) có giới hạn là 0 khi n dần tới dương vô cực, nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi.

Lời giải chi tiết:

\(\left| {{u_n}} \right| = \frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{3^n}}}\) có thể nhỏ hơn một số dương bé tùy ý khi n đủ lớn.

Ta có: \(\left| {{u_n}} \right| < 1.69 \times {10^{ - 5}}\) ta cần n > 10.

Vậy các số hạng của dãy số kể từ số hạng thứ 11 đều có giá trị nhỏ hơn \(1.69 \times {10^{ - 5}}\).

HĐ 2

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{n + {{\left( { - 1} \right)}^n}}}{n}\). Xét dãy số \(\left( {{v_n}} \right)\) xác định bởi \({v_n} = {u_n} - 1\). Tính \(\mathop {lim}\limits_{n \to  + \infty }{v_n}\;\).

Phương pháp giải:

Dãy sô \(\left( {{u_n}} \right)\) có giới hạn là số thực a khi n dần tới dương vô cực nếu \(\left( {{u_n} - a} \right)\; = 0\).

Lời giải chi tiết:

\({u_n} = {u_n} - 1 = \frac{{n + {{\left( { - 1} \right)}^n}}}{n} - 1 = \frac{{n + {{\left( { - 1} \right)}^n} - n}}{n} = \frac{{{{\left( { - 1} \right)}^n}}}{n} \to 0\) khi \(n \to  + \infty \).

Do vậy \({v_n}\; = 0\).

LT 2

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{{{3.2}^n} - 1}}{{{2^n}}}\). Chứng minh rằng \(\mathop {lim}\limits_{n \to  + \infty } {u_n} = 3\).

Phương pháp giải:

\({u_n}\; = a\) khi và chỉ khi \(\left( {{u_n} - a} \right)\; = 0\).

Lời giải chi tiết:

\({u_n} = \frac{{3 \times {2^n} - 1}}{{{2^n}}} - 3 = \frac{{3 \times {2^n} - 1 - 3 \times {2^n}}}{{{2^n}}} =  - \frac{1}{{{2^n}}} \to 0\) khi \(n \to  + \infty \).

Do vậy \({u_n}\; = 3\).

VD 1

Một quả bóng cao su được thả từ độ cao 5 m xuống một mặt sàn. Sau mỗi lần chạm sàn, quả bóng nảy lên độ cao bằng \(\frac{2}{3}\) độ cao trước đó. Giả sử rằng quả bóng luôn chuyển động vuông góc với mặt sàn và quá trình này tiếp diễn vô hạn lần. Giả sử \({u_n}\) là độ cao (tính bằng mét) của quả bóng sau lần nảy lên thứ n . Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) có giới hạn là 0.

Phương pháp giải:

\({u_n}\; = a\) khi và chỉ khi \(\left( {{u_n} - a} \right)\; = 0\).

Tìm được độ cao của quả bóng sau mỗi lần chạm sàn là cấp số nhân.

Lời giải chi tiết:

Độ cao của quả bóng sau mỗi lần chạm sàn tạo thành cấp số nhân có số hạng tổng quát:

\({u_n} = 5 \times {\left( {\frac{2}{3}} \right)^{n - 1}}\).

Ta có: \({\left( {\frac{2}{3}} \right)^{n - 1}} \to 0\) khi \(n \to  + \infty \).

Suy ra \(5{\left( {\frac{2}{3}} \right)^{n - 1}} \to 0\) khi \(n \to  + \infty \).

Vậy \({u_n}\; = 0\).


Cùng chủ đề:

Giải mục 1 trang 88 SGK Toán 11 tập 1 - Kết nối tri thức
Giải mục 1 trang 88 SGK Toán 11 tập 2 - Kết nối tri thức
Giải mục 1 trang 95 SGK Toán 11 tập 2 - Kết nối tri thức
Giải mục 1 trang 95, 96, 97 SGK Toán 11 tập 1 - Kết nối tri thức
Giải mục 1 trang 99 SGK Toán 11 tập 2 - Kết nối tri thức
Giải mục 1 trang 105, 106 SGK Toán 11 tập 1 - Kết nối tri thức
Giải mục 1 trang 111, 112, 113 SGK Toán 11 tập 1 - Kết nối tri thức
Giải mục 1 trang 119, 120 SGK Toán 11 tập 1 - Kết nối tri thức
Giải mục 2 trang 6, 7 SGK Toán 11 tập 2 - Kết nối tri thức
Giải mục 2 trang 8,9,10 SGK Toán 11 tập 1 - Kết nối tri thức
Giải mục 2 trang 11, 12, 13 SGK Toán 11 tập 2 - Kết nối tri thức