Processing math: 100%

Giải mục 1 trang 58,59 SGK Toán 12 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Giải mục 1 trang 58,59 SGK Toán 12 tập 1 - Chân trời sáng tạo

Biểu thức toạ độ của tổng, hiệu hai vectơ và tích của một số với một vectơ

KP1

Trả lời câu hỏi Khám phá 1 trang 58 SGK Toán 12 Chân trời sáng tạo

Trong không gian Oxyz, cho hai vectơ ,  và số m.

a) Biểu da=(a1;a2;a3)iễn từng vectơ ab theo ba vectơ i,j,k

b) Biểu diễn các vectơ a+b, ab, ma theo ba vectơ i,j,k, từ đó suy ra toạ độ của các vectơ a+b, ab, ma

Phương pháp giải:

i=(1;0;0);j=(0;1;0);k=(0;0;1). Áp dụng quy tắc nhân vecto với một số và quy tắc cộng trừ 2 vecto

Lời giải chi tiết:

a) a=(a1;a2;a3)=a1(1;0;0)+a2(0;0;1)+a3(0;0;1)=a1i+a2j+a3k

b=(b1;b2;b3)=b1(1;0;0)+b2(0;0;1)+b3(0;0;1)=b1i+b2j+b3k

b) a+b=a1i+a2j+a3k+b1i+b2j+b3k=(a1+b1)i+(a2+b2)j+(a3+b3)k=(a1+b1;a2+b2;a3+b3)

ab=a1i+a2j+a3kb1ib2jb3k=(a1b1)i+(a2b2)j+(a3b3)k=(a1b1;a2b2;a3b3)

ma=m(a1i+a2j+a3k)=ma1i+ma2j+ma3k=(ma1;ma2;ma3)

TH1

Trả lời câu hỏi Thực hành 1 trang 59 SGK Toán 12 Chân trời sáng tạo

Cho ba vectơ a=(2;5;3), b=(0;2;1), b=(1;7;2)

a) Tìm toạ độ của vectơ d=4a13b+3c

b) Tìm toạ độ của vectơ e=a4b2c

c) Chứng minh a cùng phương với vectơ m=(6;15;9)

Phương pháp giải:

Áp dụng quy tắc nhân vecto với một số và hai vecto ab cùng phương khi a=kb(k0)

Lời giải chi tiết:

a) d=4a13b+3c=4(2;5;3)13(0;2;1)+3(1;7;2)=(11;373;553)

b) e=a4b2c=(2;5;3)4(0;2;1)2(1;7;2)=(0;27;3)

c) Ta có: 3a=(6;15;9)=m nên a cùng phương với m

VD1

Trả lời câu hỏi Vận dụng 1 trang 59 SGK Toán 12 Chân trời sáng tạo

Một thiết bị thăm dò đáy biển đang lặn với vận tốc v=(10;8;3) (Hình 1). Cho biết vận tốc của dòng hải lưu của vùng biển là w=(3,5;1;0)

a) Tìm toạ độ của vectơ tổng hai vận tốc vw

b) Giả sử thiết bị thăm dò lặn với vận tốc u=(7;2;0), hãy nêu nhận xét về vectơ vận tốc của nó so với vectơ vận tốc của dòng hải lưu.

Phương pháp giải:

Áp dụng công thức cộng 2 vecto và tính chất 2 vecto cùng phương

Lời giải chi tiết:

a) v+w=(13,5;9;3)

b) Ta có: 2w=(7;2;0) nên wu cùng phương


Cùng chủ đề:

Giải mục 1 trang 25 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải mục 1 trang 32, 33 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải mục 1 trang 41,42,43 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải mục 1 trang 44, 45, 46, 47 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải mục 1 trang 52,53 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải mục 1 trang 58,59 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải mục 1 trang 61, 62, 63 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải mục 1 trang 68, 69, 70 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải mục 1 trang 69, 70 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải mục 1 trang 76, 77 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 8,9 SGK Toán 12 tập 2 - Chân trời sáng tạo