Giải mục 1 trang 79, 80 SGK Toán 8 – Cánh diều — Không quảng cáo

Toán 8, giải toán lớp 8 cánh diều Bài 7. Trường hợp đồng dạng thứ hai của tam giác Toán 8


Giải mục 1 trang 79, 80 SGK Toán 8 – Cánh diều

Quan sát hình 68 và so sánh:

HĐ1

Quan sát hình 68 và so sánh:

a) Các tỉ số \(\frac{{A'B'}}{{AB}}\) và \(\frac{{A'C'}}{{AC}}\)

b) Các góc \(\widehat A\) và \(\widehat {A'}\)

Phương pháp giải:

Quan sát hình và so sánh các góc và tỉ số các cạnh.

Lời giải chi tiết:

a) Ta có:

\(\begin{array}{l}\frac{{A'B'}}{{AB}} = \frac{2,4}{{2}} = \frac{6}{5}\\\frac{{A'C'}}{{AC}} = \frac{6}{5}\end{array}\)

Vậy \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\)

b) Ta có: \(\widehat A = \widehat {A'} = 135^\circ \)

LT1

Cho hai tam giác ABC và A’B’C’ thỏa mãn \(AB = 2,AC = 3,A'B' = 6,A'C' = 9\) và \(\widehat A = \widehat {A'}\). Chứng minh \(\widehat B = \widehat {B'},\,\,\widehat C = \widehat {C'}\).

Phương pháp giải:

Chứng minh hai tam giác đồng dạng theo trường hợp đồng dạng thứ hai rồi suy ra các góc bằng nhau theo định nghĩa tam giác đồng dạng.

Lời giải chi tiết:

Ta thấy

\(\begin{array}{l}\frac{{AB}}{{A'B'}} = \frac{2}{6} = \frac{1}{3}\\\frac{{AC}}{{A'C'}} = \frac{3}{9} = \frac{1}{3}\\ \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}}\end{array}\)

Xét tam giác ABC và tam giác A’B’C’ có:

\(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}}\) và \(\widehat A = \widehat {A'}\)

\( \Rightarrow \Delta ABC \backsim \Delta A'B'C'\) (c-g-c)

\( \Rightarrow \)\(\widehat B = \widehat {B'},\,\,\widehat C = \widehat {C'}\)

LT2

Cho góc \(xOy\). Trên tia Ox lấy các điểm A, B sao cho \(OA = 2cm,\,\,OB = 9cm\). Trên tia Oy lấy các điểm M, N sao cho \(OM = 3cm,\,\,ON = 6cm\). ChỨNG minh \(\widehat {OBM} = \widehat {ONA}\).

Phương pháp giải:

Chứng minh hai tam giác OAN và OMB đồng dạng theo trường hợp đồng dạng thứ hai rồi suy ra các góc bằng nhau theo định nghía tam giác đồng dạng.

Lời giải chi tiết:

Ta thấy

\(\begin{array}{l}\frac{{OA}}{{OM}} = \frac{2}{3};\,\,\frac{{ON}}{{OB}} = \frac{6}{9} = \frac{2}{3}\\ \Rightarrow \frac{{OA}}{{OM}} = \frac{{ON}}{{OB}}\end{array}\)

Xét tam giác OAN và tam giác OMB có:

\(\frac{{OA}}{{OM}} = \frac{{ON}}{{OB}}\) và \(\widehat O\) chung

\( \Rightarrow \Delta OAN \backsim \Delta OMB\) (c-g-c)

\( \Rightarrow \widehat {OBM} = \widehat {ONA}\)


Cùng chủ đề:

Giải mục 1 trang 62 SGK Toán 8 – Cánh diều
Giải mục 1 trang 67, 68 SGK Toán 8 tập 1 - Cánh diều
Giải mục 1 trang 71 SGK Toán 8 – Cánh diều
Giải mục 1 trang 71, 72 SGK Toán 8 tập 1 - Cánh diều
Giải mục 1 trang 74, 75 SGK Toán 8 – Cánh diều
Giải mục 1 trang 79, 80 SGK Toán 8 – Cánh diều
Giải mục 1 trang 80, 81 SGK Toán 8 tập 1 - Cánh diều
Giải mục 1 trang 83 SGK Toán 8 – Cánh diều
Giải mục 1 trang 84 SGK Toán 8 tập 1 - Cánh diều
Giải mục 1 trang 94, 95 SGK Toán 8 tập 1 - Cánh diều
Giải mục 1 trang 98 SGK Toán 8 tập 1 - Cánh diều