Giải mục 2 trang 14,15,16 SGK Toán 12 tập 2 - Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Giải mục 2 trang 14,15,16 SGK Toán 12 tập 2 - Chân trời sáng tạo

Khái niệm tích phân

KP2

Trả lời câu hỏi Khám phá 2 trang 14 SGK Toán 12 Chân trời sáng tạo

Cho hàm số \(f\left( x \right) = 2x - 1\). Lấy hai nguyên hàm tuỳ ý \(F\left( x \right)\) và \(G\left( x \right)\) của \(f\left( x \right)\), rồi tính \(F\left( 3 \right) - F\left( 0 \right)\) và \(G\left( 3 \right) - G\left( 0 \right)\). Nhận xét về kết quả nhận được.

Phương pháp giải:

Tính \(\int {f\left( x \right)dx} \), sau đó chọn hai nguyên hàm \(F\left( x \right)\) và \(G\left( x \right)\). So sánh \(F\left( 3 \right) - F\left( 0 \right)\) và \(G\left( 3 \right) - G\left( 0 \right)\).

Lời giải chi tiết:

Ta có \(\int {f\left( x \right)dx}  = \int {\left( {2x - 1} \right)dx}  = {x^2} - x + C\)

Chọn \(F\left( x \right) = {x^2} - x\) và \(G\left( x \right) = {x^2} - x + 1\).

Ta có

\(F\left( 3 \right) - F\left( 0 \right) = \left( {{3^2} - 3} \right) - \left( {{0^2} - 0} \right) = 6\)

\(G\left( 3 \right) - G\left( 0 \right) = \left( {{3^2} - 3 + 1} \right) - \left( {{0^2} - 0 + 1} \right) = 6\)

Như vậy \(F\left( 3 \right) - F\left( 0 \right) = G\left( 3 \right) - G\left( 0 \right)\).

TH2

Trả lời câu hỏi Thực hành 2 trang 16 SGK Toán 12 Chân trời sáng tạo

Tính các tích phân sau:

a) \(\int\limits_1^3 {2xdx} \)

b) \(\int\limits_0^\pi  {\sin tdt} \)

c) \(\int\limits_0^{\ln 2} {{e^u}du} \)

Phương pháp giải:

Sử dụng công thức \(\int\limits_a^b {f\left( x \right)dx}  = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\), với \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\)

Lời giải chi tiết:

a) \(\int\limits_1^3 {2xdx}  = \left. {{x^2}} \right|_1^3 = {3^2} - {1^2} = 8\)

b) \(\int\limits_0^\pi  {\sin tdt}  = \left. {\left( { - \cos t} \right)} \right|_0^\pi  = \left( { - \cos \pi } \right) - \left( { - \cos 0} \right) = 2\)

c) \(\int\limits_0^{\ln 2} {{e^u}du}  = \left. {{e^u}} \right|_0^2 = {e^2} - {e^0} = {e^2} - 1\)

VD1

Trả lời câu hỏi Vận dụng 1 trang 16 SGK Toán 12 Chân trời sáng tạo

Sau khi xuất phát, ô tô di chuyển với tốc độ \(v\left( t \right) = 2t - 0,03{t^2}\) \(\left( {0 \le t \le 10} \right)\), trong đó \(v\left( t \right)\) tính theo \({\rm{m/s}}\), thời gian \(t\) tính theo giây với \(t = 0\) là thời điểm xe xuất phát.

a) Tính quãng đường xe đi được sau 5 giây, sau 10 giây.

b) Tính tốc độ trung bình của xe trong khoảng thời gian từ \(t = 0\) đến \(t = 10\).

Phương pháp giải:

Gọi \(s\left( t \right)\) (m) là quãng đường ô tô đi được sau \(t\) giây.

Ta có \(s\left( t \right)\) là nguyên hàm của \(v\left( t \right)\).

a) Quãng đường xe đi được sau 5 giây là \(s\left( 5 \right) - s\left( 0 \right) = \int\limits_0^5 {v\left( t \right)dt} \)

Quãng đường xe đi được sau 10 giây là \(s\left( {10} \right) - s\left( 0 \right) = \int\limits_0^{10} {v\left( t \right)dt} \)

b) Tốc độ trung bình của xe là \({v_{tb}} = \frac{s}{t}\), với \(s\) là quãng đường xe đi được trong khoảng thời gian \(t = 10\) giây.

Lời giải chi tiết:

a) Gọi \(s\left( t \right)\) (m) là quãng đường ô tô đi được sau \(t\) giây.

Ta có \(s\left( t \right)\) là nguyên hàm của \(v\left( t \right)\).

a) Quãng đường xe đi được sau 5 giây là

\(s\left( 5 \right) - s\left( 0 \right) = \int\limits_0^5 {v\left( t \right)dt}  = \int\limits_0^5 {\left( {2t - 0,03{t^2}} \right)dt}  = \left. {\left( {{t^2} - 0,01{t^3}} \right)} \right|_0^5\)

\( = \left( {{5^2} - 0,{{01.5}^3}} \right) - \left( {{0^2} - 0,{{01.0}^3}} \right) = 23,75\)

Quãng đường xe đi được sau 10 giây là

\(s\left( {10} \right) - s\left( 0 \right) = \int\limits_0^{10} {v\left( t \right)dt}  = \int\limits_0^{10} {\left( {2t - 0,03{t^2}} \right)dt}  = \left. {\left( {{t^2} - 0,01{t^3}} \right)} \right|_0^{10}\)

\( = \left( {{{10}^2} - 0,{{01.10}^3}} \right) - \left( {{0^2} - 0,{{01.0}^3}} \right) = 90\)

b) Tốc độ trung bình của xe trong khoảng thời gian từ \(t = 0\) đến \(t = 10\) là:

\({v_{tb}} = \frac{s}{t} = \frac{{90}}{{10}} = 9\)\(\left( {{\rm{m/s}}} \right)\)


Cùng chủ đề:

Giải mục 1 trang 68, 69, 70 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải mục 1 trang 69, 70 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải mục 1 trang 76, 77 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 8,9 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 10, 11, 12 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 14,15,16 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 16, 17, 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 21 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 24,25,26 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 26, 27, 28 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 33, 34 SGK Toán 12 tập 2 - Chân trời sáng tạo