Giải mục 4 trang 61, 62 SGK Toán 9 tập 1 - Cùng khám phá — Không quảng cáo

Toán 9 cùng khám phá


Giải mục 4 trang 61, 62 SGK Toán 9 tập 1 - Cùng khám phá

Cho biểu thức A không âm và biểu thức B dương. a) Giải thích vì sao \(\sqrt {\frac{A}{B}} .\sqrt B = \sqrt A \). b) Chứng minh \(\sqrt {\frac{A}{B}} = \frac{{\sqrt A }}{{\sqrt B }}\).

HĐ4

Trả lời câu hỏi Hoạt động 4 trang 61 SGK Toán 9 Cùng khám phá

Cho biểu thức A không âm và biểu thức B dương.

a) Giải thích vì sao \(\sqrt {\frac{A}{B}} .\sqrt B  = \sqrt A \).

b) Chứng minh \(\sqrt {\frac{A}{B}}  = \frac{{\sqrt A }}{{\sqrt B }}\).

Phương pháp giải:

Với hai biểu thức A và B không âm, ta có: \(\sqrt {A.B}  = \sqrt A .\sqrt B \).

Lời giải chi tiết:

a) Ta có: \(\sqrt {\frac{A}{B}} .\sqrt B  = \sqrt {\frac{A}{B}.B}  = \sqrt A \).

b) Vì \(\sqrt {\frac{A}{B}} .\sqrt B  = \sqrt A \) nên \(\sqrt {\frac{A}{B}}  = \frac{{\sqrt A }}{{\sqrt B }}\).

LT4

Trả lời câu hỏi Luyện tập 4 trang 62 SGK Toán 9 Cùng khám phá

Rút gọn các biểu thức sau:

a) \(\frac{a}{{{b^2}}}\sqrt {\frac{{{b^4}}}{{4{a^2}}}} \) với \(a < 0\);

b) \(\frac{{\sqrt {5{x^2}{y^5}} }}{{\sqrt {80{y^3}} }}\) với \(y > 0\).

Phương pháp giải:

+ Với biểu thức A không âm và biểu thức B dương, ta có: \(\sqrt {\frac{A}{B}}  = \frac{{\sqrt A }}{{\sqrt B }}\).

+ Với mọi biểu thức đại số A, ta có: \(\sqrt {{A^2}}  = \left| A \right|\).

Lời giải chi tiết:

a) \(\frac{a}{{{b^2}}}\sqrt {\frac{{{b^4}}}{{4{a^2}}}} \)\( = \frac{a}{{{b^2}}}\sqrt {{{\left( {\frac{{{b^2}}}{{2a}}} \right)}^2}} \)\( = \frac{a}{{{b^2}}}.\frac{{{b^2}}}{{2\left| a \right|}}\)\( = \frac{a}{{{b^2}}}.\frac{{{b^2}}}{{2\left( { - a} \right)}}\)\( = \frac{{ - 1}}{2}\) (vì \(a < 0\) nên \(\left| a \right| =  - a\));

b) \(\frac{{\sqrt {5{x^2}{y^5}} }}{{\sqrt {80{y^3}} }}\)\( = \sqrt {\frac{{5{x^2}{y^5}}}{{80{y^3}}}} \)\( = \sqrt {\frac{{{x^2}{y^2}}}{{16}}} \)\( = \sqrt {{{\left( {\frac{{xy}}{4}} \right)}^2}} \)\( = \frac{{\left| x \right|y}}{4}\) (do \(y > 0\)).

VD2

Trả lời câu hỏi Vận dụng 2 trang 62 SGK Toán 9 Cùng khám phá

Giải bài toán nêu trong phần Khởi động.

Công suất P (W), hiệu điện thế U (V) và điện trở R \(\left( \Omega  \right)\) trong một đoạn mạch một chiều liên hệ với nhau theo công thức \(U = \sqrt {PR} \) (nguồn: https://dinhnghia.vn/dinh-nghia-cong-suat-cua-dong-dien-mot-chieu-xoay-chieu.html ). Nếu công suất và điện trở trong đoạn mạch tăng gấp đôi thì tỉ số giữa hiệu điện thế lúc đó và hiệu điện thế ban đầu bằng bao nhiêu?

Phương pháp giải:

+ Tính công suất và điện trở trong đoạn mạch khi tăng gấp đôi, từ đó tính hiệu điện thế mới đó.

+ Lập tỉ số giữa hiệu điện thế lúc đó và hiệu điện thế ban đầu.

Lời giải chi tiết:

Khi công suất trong đoạn mạch tăng gấp đôi thì công suất mới là 2P.

Khi điện trở trong đoạn mạch tăng gấp đôi thì điện trở mới là 2R.

Do đó, hiệu điện thế lúc này là: \({U_2} = \sqrt {2P.2R}  = \sqrt {{2^2}PR}  = 2\sqrt {PR} \).

Hiệu điện thế ban đầu là: \({U_1} = \sqrt {PR} \).

Tỉ số giữa hiệu điện thế lúc đó và hiệu điện thế ban đầu là: \(\frac{{{U_2}}}{{{U_1}}} = \frac{{2\sqrt {PR} }}{{\sqrt {PR} }} = 2\).


Cùng chủ đề:

Giải mục 3 trang 119, 120, 121 SGK Toán 9 tập 1 - Cùng khám phá
Giải mục 4 trang 13 SGK Toán 9 tập 2 - Cùng khám phá
Giải mục 4 trang 14, 15, 16 SGK Toán 9 tập 1 - Cùng khám phá
Giải mục 4 trang 35 SGK Toán 9 tập 1 - Cùng khám phá
Giải mục 4 trang 53, 54 SGK Toán 9 tập 1 - Cùng khám phá
Giải mục 4 trang 61, 62 SGK Toán 9 tập 1 - Cùng khám phá
Giải mục 4 trang 66, 67 SGK Toán 9 tập 2 - Cùng khám phá
Giải mục 4 trang 74, 75 SGK Toán 9 tập 2 - Cùng khám phá
Giải mục 4 trang 79, 80, 81 SGK Toán 9 tập 1 - Cùng khám phá
Giải mục 4 trang 82 SGK Toán 9 tập 2 - Cùng khám phá
Giải mục 4 trang 118 SGK Toán 9 tập 2 - Cùng khám phá