1. Căn thức bậc hai của một bình phương Tính chất Với biểu thức A bất kì, ta có \(\sqrt {{A^2}} = \left| A \right|\), nghĩa là \(\sqrt {{A^2}} = A\) khi \(A \ge 0\); \(\sqrt {{A^2}} = - A\) khi \(A < 0\).
Hoàn thành bảng sau vào vở. Từ đó, nhận xét gì về căn bậc hai số học của bình phương của một số?
Thực hiện các phép tính cho trên bảng trong Hình 1. b) Từ đó, có nhận xét gì về căn bậc hai của tích hai số không âm?
Thực hiện các phép tính có trên bảng trong Hình 2. b) Từ đó, có nhận xét gì về căn bậc hai của thương hai số dương?
Tính a) (sqrt {{{left( { - 10} right)}^2}} ) b) (sqrt {{{left( { - frac{2}{7}} right)}^2}} ) c) ({left( { - sqrt 2 } right)^2} - sqrt {25} ) d) ({left( { - sqrt {frac{2}{3}} } right)^2}.sqrt {0,09} )
Rút gọn các biểu thức sau: a) (sqrt {{{left( {3 - sqrt {10} } right)}^2}} ) b) (2sqrt {{a^2}} + 4a) với a < 0 c) (sqrt {{a^2}} + sqrt {{{left( {3 - a} right)}^2}} ) với 0 < a < 3
Tính a) (sqrt {16.0,25} ) b) (sqrt {{2^4}.{{( - 7)}^2}} ) c) (sqrt {0,9} .sqrt {1000} ) d) (sqrt 2 .sqrt 5 .sqrt {40} )
Rút gọn các biểu thức sau: a) (sqrt {{8^2}.5} ) b) (sqrt {81{a^2}} ) với a < 0 c) (sqrt {5a} .sqrt {45a} - 3a) với a ( ge ) 0
Tính a) (sqrt {frac{{0,49}}{{81}}} ) b) (sqrt {2frac{7}{9}} ) c) (sqrt {frac{1}{{16}}.frac{9}{{36}}} ) d) (left( { - sqrt {52} } right):sqrt {13} )
Rút gọn các biểu thức sau: a) (frac{{sqrt 5 .sqrt 6 }}{{sqrt {10} }}) b) (frac{{sqrt {24{a^3}} }}{{sqrt {6a} }}) với a > 0 c) (sqrt {frac{{3{a^2}b}}{{27}}} ) với (a le 0;b ge 0)
Cho hình chữ nhật có chiều rộng a (cm), chiều dài b (cm) và diện tích S (cm2) a) Tìm S, biết a = (sqrt 8 ); b = (sqrt {32} ). b) Tìm b, biết S = (3sqrt 2 ); a = (2sqrt 3 )
Từ một tấm thép hình vuông, người thợ cắt hai mảnh hình vuông có diện tích lần lượt là 24 cm2 và 40 cm2 như Hình 4. Tính diện tích phần còn lại của tấm thép.
Tìm chỗ sai trong phép chứng minh “voi con nặng bằng voi mẹ” sau đây: (begin{array}{l}{M^2} - 2Mm + {m^2} = {m^2} - 2mM + {M^2}\{(M - m)^2} = {(m - M)^2}\sqrt {{{(M - m)}^2}} = sqrt {{{(m - M)}^2}} \M - m = m - M\2M = 2m\M = m(!)end{array})