1. Đưa thừa số ra ngoài dấu căn Phép đưa thừa số ra ngoài dấu căn
Tính và so sánh (sqrt {{{left( { - 3} right)}^2}.25} ) với (left| { - 3} right|.sqrt {25} )
Tính và so sánh: a) (5.sqrt 4 ) với (sqrt {{5^2}.4} ;) b) ( - 5.sqrt 4 ) với ( - sqrt {{{left( { - 5} right)}^2}.4} )
Nhân cả tử và mẫu của biểu thức (frac{{3a}}{{2sqrt 2 }}) với (sqrt 2 ) và viết biểu thức nhận được dưới dạng không có căn thức ở mẫu.
Rút gọn biểu thức sau: (left( {frac{{sqrt {22} - sqrt {11} }}{{1 - sqrt 2 }} + frac{{sqrt {21} - sqrt 7 }}{{1 - sqrt 3 }}} right)left( {sqrt 7 - sqrt {11} } right).)
Đưa thừa số ra ngoài dấu căn: a) (sqrt {52} ;) b) (sqrt {27a} left( {a ge 0} right);) c) (sqrt {50sqrt 2 + 100} ;) d) (sqrt {9sqrt 5 - 18} .)
Đưa thừa số vào trong dấu căn: a) (4sqrt 3 ;) b) ( - 2sqrt 7 ;) c) (4sqrt {frac{{15}}{2}} ;) d) ( - 5sqrt {frac{{16}}{5}} .)
Khử mẫu trong dấu căn: a) (2a.sqrt {frac{3}{5}} ;) b) ( - 3x.sqrt {frac{5}{x}} left( {x > 0} right);) c) ( - sqrt {frac{{3a}}{b}} left( {a ge 0,b > 0} right).)
Trục căn thức ở mẫu: a) (frac{{4 + 3sqrt 5 }}{{sqrt 5 }};) b) (frac{1}{{sqrt 5 - 2}};) c) (frac{{3 + sqrt 3 }}{{1 - sqrt 3 }};) d) (frac{{sqrt 2 }}{{sqrt 3 + sqrt 2 }}.)
Rút gọn các biểu thức sau: a) (2sqrt {frac{2}{3}} - 4sqrt {frac{3}{2}} ;) b) (frac{{5sqrt {48} - 3sqrt {27} + 2sqrt {12} }}{{sqrt 3 }};) c) (frac{1}{{3 + 2sqrt 2 }} + frac{{4sqrt 2 - 4}}{{2 - sqrt 2 }}.)
Rút gọn biểu thức (A = sqrt x left( {frac{1}{{sqrt x + 3}} - frac{1}{{3 - sqrt x }}} right)left( {x ge 0,x ne 9} right).)