Lý thuyết Đại lượng tỉ lệ thuận Toán 7 Chân trời sáng tạo
Định nghĩa đại lượng tỉ lệ thuận
I. Các kiến thức cần nhớ
Định nghĩa đại lượng tỉ lệ thuận
+ Nếu đại lượng $y$ liên hệ với đại lượng $x$ theo công thức \(y = kx\) (với $k$ là hằng số khác $0$ ) thì ta nói $y$ tỉ lệ thuận với $x$ theo hệ số tỉ lệ $k.$
+ Khi đại lượng $y$ tỉ lệ thuận với đại lượng $x$ theo hệ số tỉ lệ $k$ (khác $0$ ) thì $x$ cũng tỉ lệ thuận với $y$ theo hệ số tỉ lệ \(\dfrac{1}{k}\) và ta nói hai đại lượng đó tỉ lệ thuận với nhau.
Ví dụ: Nếu \(y = 3x\) thì $y$ tỉ lệ thuận với $x$ theo hệ số $3$, hay $x$ tỉ lệ thuận với $y$ theo hệ số \(\dfrac{1}{3}.\)
Tính chất:
* Nếu hai đại lượng tỉ lệ thuận với nhau thì:
+ Tỉ số hai giá trị tương ứng của chúng luôn luôn không đổi.
+ Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia.
* Nếu hai đại lượng $y$ và $x$ tỉ lệ thuận với nhau theo tỉ số \(k\) thì: \(y = kx;\)
\(\dfrac{{{y_1}}}{{{x_1}}} = \dfrac{{{y_2}}}{{{x_2}}} = \dfrac{{{y_3}}}{{{x_3}}} = ... = k\) ; \(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_1}}}{{{y_2}}};\dfrac{{{x_1}}}{{{x_3}}} = \dfrac{{{y_1}}}{{{y_3}}};...\)
II. Các dạng toán thường gặp
Dạng 1: Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ thuận
Phương pháp:
+ Xác định hệ số tỉ lệ \(k.\)
+ Dùng công thức \(y = kx\) để tìm các giá trị tương ứng của \(x\) và \(y.\)
Dạng 2: Xét tương quan tỉ lệ thuận giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng
Phương pháp:
Xét xem tất cả các thương của các giá trị tương ứng của hai đại lượng xem có bằng nhau không?
Nếu bằng nhau thì hai đại lượng tỉ lệ thuận.
Nếu không bằng nhau thì hai đại lượng không tỉ lệ thuận.
Dạng 3: Bài toán về đại lượng tỉ lệ thuận
Phương pháp:
+ Xác định tương quan tỉ lệ thuận giữa hai đại lượng
+ Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ thuận.
Dạng 4: Chia một số thành những phần tỉ lệ thuận với các số cho trước
Phương pháp:
Giả sử chia số \(P\) thành ba phần \(x,\,y,\,z\) tỉ lệ với các số \(a,b,c\), ta làm như sau:
\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x + y + z}}{{a + b + c}} = \dfrac{P}{{a + b + c}}\)
Từ đó \(x = \dfrac{P}{{a + b + c}}.a;\,y = \dfrac{P}{{a + b + c}}.b\); \(z = \dfrac{P}{{a + b + c}}.c\).