Lý thuyết Đường tiệm cận của đồ thị hàm số Toán 12 Cùng khám phá — Không quảng cáo

Toán 12 Cùng khám phá


Lý thuyết Đường tiệm cận của đồ thị hàm số Toán 12 Cùng khám phá

1. Đường tiệm cận ngang của đồ thị hàm số

1. Đường tiệm cận ngang của đồ thị hàm số

Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f(x) = {y_0}\).

Ví dụ: Tìm TCN của đồ thị hàm số \(y = f(x) = \frac{{3x - 2}}{{x + 1}}\).

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{3x - 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{3x - 2}}{{x + 1}} = 3\).

Vậy đồ thị hàm số f(x) có TCN là y = 3.

2. Đường tiệm cận đứng của đồ thị hàm số

Đường thẳng \(x = {x_0}\) gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:\(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) =  + \infty ;\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) =  - \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) =  + \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) =  - \infty \).

Ví dụ: Tìm TCĐ của đồ thị hàm số \(y = f(x) = \frac{{3 - x}}{{x + 2}}\).

Ta có: \(\mathop {\lim }\limits_{x \to  - {2^ + }} \frac{{3x - 2}}{{x + 2}} =  + \infty \).

Vậy đồ thị hàm số có TCĐ là x = -2.

3. Đường tiệm cận xiên của đồ thị hàm số

Đường thẳng \(y = ax + b(a \ne 0)\) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số y = f(x) nếu

\(\mathop {\lim }\limits_{x \to  + \infty } f(x) = \left[ {f(x) - (ax + b)} \right] = 0\)

hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f(x) = \left[ {f(x) - (ax + b)} \right] = 0\).

Ví dụ: Tìm TCX của đồ thị hàm số \(y = f(x) = x + \frac{1}{{x + 2}}\).

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f(x) - x} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{x + 2}} = 0\).

Vậy đồ thị hàm số có TCX là y = x.


Cùng chủ đề:

Lý thuyết Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm Toán 12 Cùng khám phá
Lý thuyết Lý thuyết Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm Toán 12 Cùng khám phá
Lý thuyết Tính đơn điệu và cực trị của hàm số Toán 12 Cùng khám phá
Lý thuyết Tính đơn điệu và cực trị của hàm số của hàm số Toán 12 Cánh Diều
Lý thuyết Vecto trong không gian Toán 12 Cùng khám phá
Lý thuyết Đường tiệm cận của đồ thị hàm số Toán 12 Cùng khám phá
Toán 12 Cùng khám phá