Lý thuyết Tính đơn điệu và cực trị của hàm số của hàm số Toán 12 Cánh Diều
Tính đơn điệu và cực trị của hàm số của hàm số Cho hàm số y = f(x) có đạo hàm trên khoảng (a;b), (có thể a là \( - \infty \);b là \( + \infty \)) Hàm số y = f(x) đồng biến trên khoảng K nếu f’(x) > 0 Hàm số y = f(x) đồng biến trên khoảng K nếu f’(x) < 0
1. Tính đơn điệu của hàm số và dấu của đạo hàm
Định lý
Cho hàm số y = f(x) có đạo hàm trên khoảng (a;b), (có thể a là \( - \infty \);b là \( + \infty \))
|
Ví dụ: Hàm số \(y = {x^2} - 4x + 2\) có y’ = 2x – 4
- y’ > 0 với \(x \in (2; + \infty )\) nên HS đồng biến trên khoảng \(\left( {2; + \infty } \right)\)
- y’ < 0 với \(x \in ( - \infty ;2)\) nên HS đồng biến trên khoảng \(\left( { - \infty ;2} \right)\)
Định lý mở rộng
Cho hàm số y = f(x) có đạo hàm trên khoảng (a;b).
|
2. Cực trị của hàm số
Khái niệm cực trị của hàm số
Cho hàm số y = f(x) xác định và liên tục trên khoảng (a;b) (a có thể là \( - \infty \), b có thể là \( + \infty \) ) và điểm \({x_0} \in \left( {a;b} \right)\).
|
Ví dụ: Cho đồ thị của hàm số y = f(x) như sau:
Hàm số đạt cực tiểu tại x = -1 và \({y_{CT}}\)= y(-1) = 2
Hàm số đạt cực đại tại x = 0 và = y(0) = 3
Hàm số đạt cực tiểu tại x = 1 và \({y_{CT}}\)= y(1) = 2
Định lí (điều kiện đủ để hàm số có cực trị)
Giả sử hàm số y = f(x) liên tục trên khoảng (a;b) chứa điểm \({x_0}\) và có đạo hàm trên các khoảng \(\left( {a;{x_0}} \right)\) và \(\left( {{x_0};b} \right)\). Khi đó:
|
Ví dụ: Tìm cực trị của hàm số \(y = {x^3} - 6{x^2} + 9x + 30.\)
Tập xác định của hàm số là R.
Ta có: \(y' = 3{x^2} - 12x + 9\); y’ = 0 \( \Leftrightarrow \)x = 1 hoặc x = 3.
BBT:
Hàm số đạt cực đại tại x = 1 và = y(1) = 34.
Hàm số đạt cực tiểu tại x = 3 và \({y_{CT}}\)= y(3) = 30.
Tổng quát, ta có quy tắc tìm cực trị của hàm số y = f(x)
|