Processing math: 100%

Lý thuyết Hệ trục tọa độ trong không gian Toán 12 Cùng khám phá — Không quảng cáo

Toán 12 Cùng khám phá


Lý thuyết Hệ trục tọa độ trong không gian Toán 12 Cùng khám phá

1. Hệ trục tọa độ trong không gian

1. Hệ trục tọa độ trong không gian

Trong không gian, hệ ba trục Ox, Oy, Oz đôi một vuông góc được gọi là hệ trục tọa độ vuông góc Oxyz, hay đơn giản gọi là hệ tọa độ Oxyz.

Lưu ý:

- Điểm O được gọi là gốc tọa độ

- Ba trục Ox, Oy, Oz lần lượt được gọi là trục hoành, trục tung, trục cao

- Ba mặt phẳng (Oxy), (Oxz), (Oyz) đôi một vuông góc với nhau, được gọi là các mặt phẳng tọa độ. Không gian gắn với hệ tọa độ Oxyz được gọi là không gian Oxyz

- Ta quy ước gọi i,j,k tương ứng là ba vecto đơn vị trên ba trục Ox, Oy, Oz. Từ nay trở đi, nếu không nói gì thêm thì ta hiểu Không gian Oxyz đã có bộ ba vecto đơn vị trên các trục là i,j,k. Vì các vecto i,j,k có độ dài bằng 1 và đôi một vuông góc với nhau nên:

i2=j2=k2=1

i.j=j.k=k.i=0

2. Tọa độ của một điểm

Trong không gian Oxyz, cho điểm M. Nếu OM=xi+yj+zk thì ta gọi bộ ba số (x;y;z) là tọa độ điểm M đối với hệ trục tọa độ Oxyz và viết M = (x;y;z) hoặc M (x;y;z); x là hoành độ, y là tung độ, z là cao độ của điểm M.

3. Tọa độ của vecto

Trong không gian Oxyz, cho a. Nếu a=a1i+a2j+a3k thì ta gọi bộ ba số (a1;a2;a3) là tọa độ của a đối với hệ tọa độ Oxyz và viết a=(a1;a2;a3) hoặc a(a1;a2;a3)

Trong không gian Oxyz, nếu M(xM;yM;zM)N(xN;yN;zN) thì:

MN=(xNxM;yNyM;zNzM)

Ví dụ: Trong không gian Oxyz, cho hình lăng trụ tam giác ABC.A’B’C có A(1;0;2), B(3;2;5), C(7;-3;9).

Tìm tọa độ của AA.

Tìm tọa độ của các điểm B’, C’.

Lời giải

Ta có: AA=(xAxA;yAyA;zAzA)=(4;0;1).

Gọi tọa độ của điểm B’ là (x,y,z) thì BB = (x-3;y-2;z-5). Vì ABC.A’B’C’ là hình lăng trụ nên ABB’A’ là hình bình hành, suy ra AA = BB.

Do đó {x3=4y2=0z5=1 hay x = 7, y = 2, z = 4. Vậy B’(7;2;4).

Lập luận tương tự suy ra C’(11;-3;8).


Cùng chủ đề:

Giải toán 12 bài 4 trang 74, 75, 76, 77, 78, 79, 80, 81, 82 Cùng khám phá
Giải trang 96, 97, 98, 99, 100, 101 SGK Toán 12 tập 1 - Cùng khám phá
Lý thuyết Biểu thức tọa độ của các phép toán vecto Toán 12 Cùng khám phá
Lý thuyết Các phép toán vecto trong không gian Toán 12 Cùng khám phá
Lý thuyết Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán 12 Cùng khám phá
Lý thuyết Hệ trục tọa độ trong không gian Toán 12 Cùng khám phá
Lý thuyết Khảo sát và vẽ đồ thị của hàm số Toán 12 Cùng khám phá
Lý thuyết Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm Toán 12 Cùng khám phá
Lý thuyết Lý thuyết Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm Toán 12 Cùng khám phá
Lý thuyết Tính đơn điệu và cực trị của hàm số Toán 12 Cùng khám phá
Lý thuyết Tính đơn điệu và cực trị của hàm số của hàm số Toán 12 Cánh Diều