Lý thuyết Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán 12 Cùng khám phá — Không quảng cáo

Toán 12 Cùng khám phá


Lý thuyết Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán 12 Cùng khám phá

1. Định nghĩa

1. Định nghĩa

Cho hàm số y = f(x) xác định trên tập D.

+) Số M là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu f(x) \( \le \) M với mọi \(x \in D\) và tồn tại \({x_0} \in D\) sao cho \(f({x_0})\) = M. Kí hiệu M = \(\mathop {\max }\limits_{x \in D} f(x)\) hoặc M = \(\mathop {\max }\limits_D f(x)\).

+) Số m là giá trị nhỏ nhất của hàm số y = f(x) trên tập D nếu f(x) \( \ge \) m với mọi \(x \in D\) và tồn tại \({x_0} \in D\) sao cho \(f({x_0})\) = m. Kí hiệu m = \(\mathop {\min }\limits_{x \in D} f(x)\) hoặc m = \(\mathop {\min }\limits_D f(x)\).

Ví dụ: Tìm GTLN, GTNN của hàm số \(y = f(x) = \sqrt {1 - {x^2}} \).

Tập xác định của hàm số là \(\left[ { - 1;1} \right]\).

Ta có:

  • \(f(x) = \sqrt {1 - {x^2}} \) \( \ge \) 0; dấu bằng xảy ra khi \(1 - {x^2} = 0\), tức x = -1 hoặc x = 1.

Do đó \(\mathop {\min }\limits_{x \in \left[ { - 1;1} \right]} f(x) = f( - 1) = f(1) = 0\).

  • \(f(x) = \sqrt {1 - {x^2}} \) \( \le 1\); dấu bằng xảy ra khi \(1 - {x^2} = 1\), tức x = 0.

Do đó \(\mathop {\max }\limits_{x \in \left[ { - 1;1} \right]} f(x) = f(0) = 1\).

2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn

Các bước tìm GTLN và GTNN của hàm số f(x) trên đoạn \(\left[ {a;b} \right]\):

  1. Tìm các điểm \({x_1},{x_2},...,{x_n} \in (a;b)\), tại đó f’(x) = 0 hoặc không tồn tại.
  2. Tính \(f({x_1}),f({x_2}),...,f({x_n}),f(a)\) và \(f(b)\).
  3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên. Ta có:
  4. M = \(\mathop {\max }\limits_{\left[ {a;b} \right]} f(x)\); m = \(\mathop {\min }\limits_{\left[ {a;b} \right]} f(x)\).

Ví dụ: Tìm GTLN và GTNN của hàm số \(y = {x^4} - 4{x^2} + 3\) trên đoạn \(\left[ {0;4} \right]\).

Ta có: \(y' = 4{x^3} - 8x = 4x({x^2} - 2);y' = 0 \Leftrightarrow x = 0\) hoặc \(x = \sqrt 2 \) (vì \(x \in \left[ {0;4} \right]\)).

y(0) = 3; y(4) = 195; y(\(\sqrt 2 \)) = -1.

Do đó: \(\mathop {\max }\limits_{\left[ {0;4} \right]} y = y(4) = 195\); \(\mathop {\min }\limits_{\left[ {0;4} \right]} y = y(\sqrt 2 ) =  - 1\).


Cùng chủ đề:

Giải toán 12 bài 4 trang 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38 Cùng khám phá
Giải toán 12 bài 4 trang 74, 75, 76, 77, 78, 79, 80, 81, 82 Cùng khám phá
Giải trang 96, 97, 98, 99, 100, 101 SGK Toán 12 tập 1 - Cùng khám phá
Lý thuyết Biểu thức tọa độ của các phép toán vecto Toán 12 Cùng khám phá
Lý thuyết Các phép toán vecto trong không gian Toán 12 Cùng khám phá
Lý thuyết Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán 12 Cùng khám phá
Lý thuyết Hệ trục tọa độ trong không gian Toán 12 Cùng khám phá
Lý thuyết Khảo sát và vẽ đồ thị của hàm số Toán 12 Cùng khám phá
Lý thuyết Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm Toán 12 Cùng khám phá
Lý thuyết Lý thuyết Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm Toán 12 Cùng khám phá
Lý thuyết Tính đơn điệu và cực trị của hàm số Toán 12 Cùng khám phá