Lý thuyết Vecto trong không gian Toán 12 Cùng khám phá
1. Vecto trong không gian
1. Vecto trong không gian
Vecto trong không gian là một đoạn thẳng có hướng. |
Ví dụ: Cho tứ diện ABCD. Hãy chỉ ra các vecto có điểm đầu A và điểm cuối là một trong các đỉnh còn lại của tứ diện.
Lời giải:
Ngoài đỉnh A, tứ diện còn có 3 đỉnh B, C, D nên ta có 3 vecto →AB,→AC,→AD.
2. Độ dài của vecto. Hai vecto cùng phương, cùng hướng, bằng nhau
- Độ dài của vecto là khoảng cách giữa điểm đầu và điểm cuối của nó. Độ dài của vecto →a được kí hiệu là |→a|. - Giá của vecto là đường thẳng đi qua điểm đầu và điểm cuối của vecto đó. - Hai vecto được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau. - Nếu hai vecto cùng phương thì chúng có thể cùng hướng hoặc ngược hướng. - Hai vecto được gọi là bằng nhau nếu chúng có cùng độ dài và cùng hướng. - Nếu hai vecto →a,→b bằng nhau thì ta viết →a=→b.. - Hai vecto được gọi là đối nhau nếu chúng có cùng độ dài và ngược hướng. - Vecto đối của →a được kí hiệu là −→a. |