Lý thuyết Hàm số y = ax² (a ≠ 0) Toán 9 Kết nối tri thức — Không quảng cáo

Toán 9 kết nối tri thức


Lý thuyết Hàm số y = ax² (a ≠ 0) Toán 9 Kết nối tri thức

1. Hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) Hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) xác định với mọi giá trị x thuộc \(\mathbb{R}\).

1. Hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)

Hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) xác định với mọi giá trị x thuộc \(\mathbb{R}\).

Ví dụ: Hàm số \(y = 2{x^2},y =  - \frac{3}{2}{x^2}\) là các hàm số có dạng \(y = a{x^2}\left( {a \ne 0} \right)\) .

2. Đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)

Cách vẽ đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)

- Lập bảng ghi một số cặp giá trị tương ứng của x và y.

- Trong mặt phẳng tọa độ Oxy, biểu diễn các cặp điểm (x; y) trong bảng giá trị trên và nối chúng lại để được một đường cong là đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\).

Ví dụ: Vẽ đồ thị của hàm số \(y = {x^2}\).

Lập bảng một số giá trị tương ứng giữa x và y:

Biểu diễn các điểm \(\left( { - 2;4} \right)\), \(\left( { - 1;1} \right)\), \(\left( {0;0} \right)\), \(\left( {1;1} \right)\), \(\left( {2;4} \right)\) trên mặt phẳng tọa độ Oxy và nối chúng lại với nhau, ta được đồ thị hàm số \(y = {x^2}\) như hình vẽ sau:

Tính đối xứng của đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)

Đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) là một đường cong, gọi là đường parabol , có các tính chất sau:

- Có đỉnh là gốc tọa độ O;

- Có trục đối xứng là Oy;

- Nằm phía trên trục hoành nếu a > 0 và nằm phía dưới trục hoành nếu a < 0.

Nhận xét:

- Khi vẽ đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\), ta cần xác định tối thiểu 5 điểm thuộc đồ thị là gốc tọa độ O và hai cặp điểm đối xứng với nhau qua trục tung Oy.

- Do đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) nhận trục tung Oy là trục đối xứng nên ta có thể lập bảng giá trị của hàm số này với những giá trị x không âm và vẽ phần đồ thị tương ứng ở bên phải trục tung, sau đó lấy đối xứng phần đồ thị đã vẽ qua trục tung ta sẽ được đồ thị của hàm số đã cho.


Cùng chủ đề:

Lý thuyết Cung và dây của một đường tròn Toán 9 Kết nối tri thức
Lý thuyết Giải bài toán bằng cách lập hệ phương trình Toán 9 Kết nối tri thức
Lý thuyết Giải bài toán bằng cách lập phương trình Toán 9 Kết nối tri thức
Lý thuyết Giải hệ hai phương trình bậc nhất hai ẩn Toán 9 Kết nối tri thức
Lý thuyết Góc nội tiếp Toán 9 Kết nối tri thức
Lý thuyết Hàm số y = ax² (a ≠ 0) Toán 9 Kết nối tri thức
Lý thuyết Hình cầu Toán 9 Kết nối tri thức
Lý thuyết Hình trụ và hình nón Toán 9 Kết nối tri thức
Lý thuyết Khai căn bậc hai với phép nhân và phép chia Toán 9 Kết nối tri thức
Lý thuyết Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn Toán 9 Kết nối tri thức
Lý thuyết Mở đầu về đường tròn Toán 9 Kết nối tri thức