Lý thuyết Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn Toán 9 Kết nối tri thức — Không quảng cáo

Toán 9 kết nối tri thức


Lý thuyết Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn Toán 9 Kết nối tri thức

1. Phương trình bậc nhất hai ẩn Khái niệm phương trình bậc nhất hai ẩn

1. Phương trình bậc nhất hai ẩn

Khái niệm phương trình bậc nhất hai ẩn

Phương trình bậc nhất hai ẩn x và y là hệ thức dạng

\(ax + by = c\),       (1)

trong đó a, b và c là các số đã biết (\(a \ne 0\) hoặc \(b \ne 0\)).

Ví dụ: \(2x + 3y = 4\), \(0x + 2y = 3\), \(x + 0y = 2\) là các phương trình bậc nhất hai ẩn.

Nghiệm của phương trình bậc nhất hai ẩn

Nếu tại \(x = {x_0}\) và \(y = {y_0}\) ta có \(a{x_0} + b{y_0} = c\) là một khẳng định đúng thì cặp số \(\left( {{x_0};{y_0}} \right)\) được gọi là một nghiệm của phương trình (1).

Ví dụ: Cặp số \(( - 1;2)\) là nghiệm của phương trình \(2x + 3y = 4\) vì \(2.\left( { - 1} \right) + 3.2 =  - 2 + 6 = 4\).

Cặp số \((1;2)\) không là nghiệm của phương trình \(2x + 3y = 4\) vì

\(2.1 + 3.2 = 2 + 6 = 8 \ne 4\).

2. Hệ hai phương trình bậc nhất hai ẩn

Khái niệm hệ hai phương trình bậc nhất hai ẩn

Một cặp gồm hai phương trình bậc nhất hai ẩn \(ax + by = c\) và \(a'x + b'y = c'\) được gọi là một hệ hai phương trình bậc nhất hai ẩn. Ta thường viết hệ phương trình đó dưới dạng:

\(\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\,(*)\)

Ví dụ: Hệ phương trình \(\left\{ \begin{array}{l}2x - y = 0\\x + y = 3\end{array} \right.\), \(\left\{ \begin{array}{l}3x = 1\\x - y = 3\end{array} \right.\), \(\left\{ \begin{array}{l}4x - y = 3\\3y = 6\end{array} \right.\) là các hệ phương trình bậc nhất hai ẩn.

Nghiệm của hệ hai phương trình bậc nhất hai ẩn

Mỗi cặp số \(\left( {{x_0};{y_0}} \right)\) được gọi là một nghiệm của hệ (*) nếu nó là nghiệm chung của hai phương trình của hệ (*).

Ví dụ: Cặp số (1; 2) là một nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x - y = 0\\x + y = 3\end{array} \right.\), vì:

\(2x - y = 2.1 - 2 = 0\) nên (1; 2) là nghiệm của phương trình thứ nhất.

\(x + y = 1 + 2 = 3\) nên (1; 2) là nghiệm của phương trình thứ hai.


Cùng chủ đề:

Lý thuyết Góc nội tiếp Toán 9 Kết nối tri thức
Lý thuyết Hàm số y = ax² (a ≠ 0) Toán 9 Kết nối tri thức
Lý thuyết Hình cầu Toán 9 Kết nối tri thức
Lý thuyết Hình trụ và hình nón Toán 9 Kết nối tri thức
Lý thuyết Khai căn bậc hai với phép nhân và phép chia Toán 9 Kết nối tri thức
Lý thuyết Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn Toán 9 Kết nối tri thức
Lý thuyết Mở đầu về đường tròn Toán 9 Kết nối tri thức
Lý thuyết Một số hệ thức giữa cạnh, góc trong một tam giác vuông và ứng dụng Toán 9 Kết nối tri thức
Lý thuyết Phép thử ngẫu nhiên và không gian mẫu Toán 9 Kết nối tri thức
Lý thuyết Phương trình bậc hai một ẩn Toán 9 Kết nối tri thức
Lý thuyết Phương trình quy về phương trình bậc nhất một ẩn Toán 9 Kết nối tri thức