Lý thuyết Phương trình quy về phương trình bậc nhất một ẩn Toán 9 Kết nối tri thức — Không quảng cáo

Toán 9 kết nối tri thức


Lý thuyết Phương trình quy về phương trình bậc nhất một ẩn Toán 9 Kết nối tri thức

1. Phương trình tích Cách giải phương trình tích

1. Phương trình tích

Cách giải phương trình tích

Để giải phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\), ta giải hai phương trình \(ax + b = 0\) và \(cx + d = 0\). Sau đó lấy tất cả các nghiệm của chúng.

Ví dụ: Giải phương trình \(\left( {2x + 1} \right)\left( {3x - 1} \right) = 0\)

Lời giải:

Ta có: \(\left( {2x + 1} \right)\left( {3x - 1} \right) = 0\)

nên \(2x + 1 = 0\) hoặc \(3x - 1 = 0\).

\(2x + 1 = 0\) hay \(2x =  - 1\), suy ra \(x =  - \frac{1}{2}\).

\(3x - 1 = 0\) hay \(3x = 1\), suy ra \(x = \frac{1}{3}\).

Vậy phương trình đã cho có hai nghiệm là \(x =  - \frac{1}{2}\) và \(x = \frac{1}{3}\).

Các bước giải phương trình:

Bước 1. Đưa phương trình về phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\).

Bước 2. Giải phương trình tích tìm được.

Ví dụ: Giải phương trình \({x^2} - x =  - 2x + 2\).

Lời giải:

Biến đổi phương trình đã cho về phương trình tích như sau:

\(\begin{array}{l}{x^2} - x =  - 2x + 2\\{x^2} - x + 2x - 2 = 0\\x\left( {x - 1} \right) + 2\left( {x - 1} \right) = 0\\\left( {x + 2} \right)\left( {x - 1} \right) = 0.\end{array}\)

Ta giải hai phương trình sau:

\(x + 2 = 0\) suy ra \(x =  - 2\).

\(x - 1 = 0\) suy ra \(x = 1\).

Vậy phương trình đã cho có hai nghiệm là \(x =  - 2\) và \(x = 1\).

2. Phương trình chứa ẩn ở mẫu

Điều kiện xác định của phương trình chứa ẩn ở mẫu

Đối với phương trình chứa ẩn ở mẫu, ta thường đặt điều kiện cho ẩn để tất cả các mẫu thức trong phương trình đều khác 0 và gọi đó là điều kiện xác định (viết tắt là ĐKXĐ) của phương trình.

Ví dụ:

- Phương trình \(\frac{{5x + 2}}{{x - 1}} = 0\) có điều kiện xác định là \(x \ne 1\) vì \(x - 1 \ne 0\) khi \(x \ne 1\).

- Phương trình \(\frac{1}{{x + 1}} = 1 + \frac{1}{{x - 2}}\) có điều kiện xác định là \(x \ne  - 1\) và \(x \ne 2\) vì \(x + 1 \ne 0\) khi \(x \ne  - 1\), \(x - 2 \ne 0\) khi \(x \ne 2\).

Các bước giải phương trình chứa ẩn ở mẫu

Bước 1. Tìm điều kiện xác định của phương trình.

Bước 2. Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3. Giải phương trình vừa tìm được.

Bước 4 (Kết luận). Trong các giá trị tìm được của ẩn ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho.

Ví dụ: Giải phương trình \(\frac{2}{{x + 1}} + \frac{1}{{x - 2}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\)

Lời giải:

Điều kiện xác định \(x \ne  - 1\) và \(x \ne 2\).

Quy đồng mẫu và khử mẫu, ta được \(\frac{{2\left( {x - 2} \right) + \left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 2} \right)}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\), suy ra \(2\left( {x - 2} \right) + \left( {x + 1} \right) = 3\).

Giải phương trình \(2\left( {x - 2} \right) + \left( {x + 1} \right) = 3\):

\(\begin{array}{l}2\left( {x - 2} \right) + \left( {x + 1} \right) = 3\\2x - 4 + x + 1 = 3\\3x - 3 = 3\\3x = 6\\x = 2\end{array}\)

Giá trị \(x = 2\) không thỏa mãn ĐKXĐ.

Vậy phương trình \(\frac{2}{{x + 1}} + \frac{1}{{x - 2}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\) vô nghiệm.


Cùng chủ đề:

Lý thuyết Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn Toán 9 Kết nối tri thức
Lý thuyết Mở đầu về đường tròn Toán 9 Kết nối tri thức
Lý thuyết Một số hệ thức giữa cạnh, góc trong một tam giác vuông và ứng dụng Toán 9 Kết nối tri thức
Lý thuyết Phép thử ngẫu nhiên và không gian mẫu Toán 9 Kết nối tri thức
Lý thuyết Phương trình bậc hai một ẩn Toán 9 Kết nối tri thức
Lý thuyết Phương trình quy về phương trình bậc nhất một ẩn Toán 9 Kết nối tri thức
Lý thuyết Tỉ số lượng giác của góc nhọn Toán 9 Kết nối tri thức
Lý thuyết Tứ giác nội tiếp Toán 9 Kết nối tri thức
Lý thuyết Vị trí tương đối của hai đường tròn Toán 9 Kết nối tri thức
Lý thuyết Vị trí tương đối của đường thẳng và đường tròn Toán 9 Kết nối tri thức
Lý thuyết Xác suất của biến cố liên quan tới phép thử Toán 9 Kết nối tri thức