Lý thuyết Vị trí tương đối của đường thẳng và đường tròn Toán 9 Kết nối tri thức
1. Vị trí tương đối của đường thẳng và đường tròn
1. Vị trí tương đối của đường thẳng và đường tròn
Điểm chung H của đường thẳng và đường tròn tiếp xúc với nhau goi là tiếp điểm . Khi đó đường thẳng a còn gọi là tiếp tuyến của đường tròn (O) tại H.
Đường thẳng a tiếp xúc với đường tròn (O) tại H thì \(OH \bot a\).
2. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Dấu hiệu nhận biết tiếp tuyến
Nếu một đường thẳng đi qua một điểm nằm trên một đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là tiếp tuyến của đường tròn. |
3. Hai tiếp tuyến cắt nhau của một đường tròn
Tính chất của hai tiếp tuyến cắt nhau
Nếu hai tiếp tuyến của đường tròn (O) cắt nhau tại điểm P thì: - Điểm P cách đều hai tiếp điểm; - PO là tia phân giác của góc tạo bởi hai tiếp tuyến; - OP là tia phân giác của góc tạo bởi hai bán kính qua hai tiếp điểm. |
Ví dụ: Cho đường tròn (O), B, C \( \in \) (O). Tiếp tuyến của (O) tại B và C cắt nhau tại A.
Khi đó:
- AB = AC
- Tia AO là tia phân giác của \(\widehat {BAC}\).
- Tia OA là tia phân giác của \(\widehat {BOC}\).