Lý thuyết Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác Toán 9 Kết nối tri thức — Không quảng cáo

Toán 9 kết nối tri thức


Lý thuyết Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác Toán 9 Kết nối tri thức

1. Đường tròn ngoại tiếp của một tam giác Định nghĩa đường tròn ngoại tiếp tam giác Đường tròn ngoại tiếp của một tam giác là đường tròn đi qua ba đỉnh của tam giác đó.

1. Đường tròn ngoại tiếp của một tam giác

Định nghĩa đường tròn ngoại tiếp tam giác

Đường tròn ngoại tiếp của một tam giác là đường tròn đi qua ba đỉnh của tam giác đó.

Ví dụ:

- Đường tròn (O) ngoại tiếp tam giác ABC. Tam giác ABC nội tiếp đường tròn (O).

- Tâm O là giao điểm của ba đường trung trực của tam giác ABC.

Đường tròn ngoại tiếp tam giác vuông

Đường tròn ngoại tiếp tam giác vuông có tâm là trung điểm của cạnh huyền và bán kính bằng một nửa cạnh huyền.

Ví dụ:

Tam giác ABC nội tiếp đường tròn (O; BO).

Đường tròn ngoại tiếp tam giác đều

Đường tròn ngoại tiếp tam giác đều cạnh a có tâm là trọng tâm của tam giác đó và bán kính bằng \(\frac{{\sqrt 3 }}{3}a\).

Ví dụ:

Đường tròn (O) ngoại tiếp tam giác đều ABC, bán kính \(OA = OB = OC = \frac{{\sqrt 3 }}{3}AB\).

2. Đường tròn nội tiếp một tam giác

Định nghĩa đường tròn nội tiếp tam giác

Đường tròn tiếp xúc với ba cạnh của tam giác được gọi là đường tròn nội tiếp tam giác . Tam giác đó được gọi là ngoại tiếp đường tròn. Tâm đường tròn nội tiếp tam giác là giao điểm ba đường phân giác của tam giác.

Ví dụ:

- Đường tròn (I) nội tiếp tam giác ABC. Tam giác ABC ngoại tiếp đường tròn (I).

- Tâm I là giao điểm của ba đường phân giác của tam giác.

Đường tròn nội tiếp tam giác đều

Đường tròn nội tiếp tam giác đều cạnh a có tâm là trọng tâm của tam giác đó và bán kính bằng \(\frac{{\sqrt 3 }}{6}a\).

Ví dụ:

Đường tròn (O) nội tiếp tam giác đều ABC, bán kính \(OD = OE = \frac{{\sqrt 3 }}{6}AB\).


Cùng chủ đề:

Lý thuyết Vị trí tương đối của đường thẳng và đường tròn Toán 9 Kết nối tri thức
Lý thuyết Xác suất của biến cố liên quan tới phép thử Toán 9 Kết nối tri thức
Lý thuyết Đa giác đều Toán 9 Kết nối tri thức
Lý thuyết Định lí Viète và ứng dụng Toán 9 Kết nối tri thức
Lý thuyết Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên Toán 9 Kết nối tri thức
Lý thuyết Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác Toán 9 Kết nối tri thức
Toán 9 kết nối tri thức