Lý thuyết Xác suất của biến cố liên quan tới phép thử Toán 9 Kết nối tri thức — Không quảng cáo

Toán 9 kết nối tri thức


Lý thuyết Xác suất của biến cố liên quan tới phép thử Toán 9 Kết nối tri thức

1. Kết quả thuận lợi của một biến cố liên quan tới phép thử Cho phép thử T. Xét biến cố E, ở đó việc xảy ra hay không xảy ra của E tùy thuộc vào kết quả của phép thử T. Kết quả của phép thử T làm cho biến cố E xảy ra gọi là kết quả thuận lợi cho E.

1. Kết quả thuận lợi của một biến cố liên quan tới phép thử

Cho phép thử T. Xét biến cố E, ở đó việc xảy ra hay không xảy ra của E tùy thuộc vào kết quả của phép thử T. Kết quả của phép thử T làm cho biến cố E xảy ra gọi là kết quả thuận lợi cho E.

Ví dụ: Bạn Lan gieo một con xúc xắc và bạn Hòa gieo một đồng xu được gọi là phép thử.

Kết quả của phép thử là số chấm xuất hiện trên con xúc xác và mặt xuất hiện của đồng xu.

Các kết quả có thể của phép thử là:

Các kết quả thuận lợi cho biến cố “Số chấm xuất hiện trên con xúc xắc là số chẵn và mặt xuất hiện của đồng xu là mặt sấp” là (2, S); (4, S); (6, S).

2. Tính xác suất của biến cố liên quan đến phép thử khi các kết quả của phép thử đồng khả năng

Giả sử rằng các kết quả có thể của phép thử T là đồng khả năng. Khi đó xác suất P(E) của biến cố E bằng tỉ số giữa số kết quả thuận lợi cho biến cố E và số phần tử của tập \(\Omega \):

\(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega  \right)}}\),

trong đó \(\Omega \) là không gian mẫu của T; n(E) là số kết quả thuận lợi cho biến cố E và \(n\left( \Omega  \right)\) là số phần tử của tập \(\Omega \)

Cách tính xác suất của một biến cố

Việc tính xác suất của một biến cố E gồm các bước sau:

Bước 1. Mô tả không gian mẫu của phép thử. Từ đó xác định số phần tử của không gian mẫu \(\Omega \).

Bước 2. Chứng tỏ các kết quả có thể của phép thử là đồng khả năng.

Bước 3. Mô tả các kết quả thuận lợi cho biến cố E. Từ đó xác định số kết quả thuận lợi cho biến cố E.

Bước 4. Lập tỉ số giữa số kết quả thuận lợi cho biến cố E với số phần tử của không gian mẫu \(\Omega \).

Ví dụ: Ba bạn Bảo, Châu, Dương được xếp ngẫu nhiên ngồi trên một hàng ghế có ba chỗ ngồi. Tính xác suất của các biến cố sau:

a) E: "Bảo không ngồi ngoài cùng bên phải";

b) F: “Châu và Dương không ngồi cạnh nhau”.

Lời giải:

Kí hiệu ba bạn Bảo, Châu, Dương lần lượt là B, C, D.

Ta liệt kê các kết quả có thể xảy ra:

• Bảo ngồi ngoài cùng bên trái: có 2 cách xếp là BCD và BDC.

• Bảo ngồi giữa: có 2 cách xếp là CBD và DBC.

• Bảo ngồi ngoài cùng bên phải: có 2 cách xếp là CDB và DCB.

Vậy không gian mẫu của phép thử là \(\Omega  = \left\{ {BCD;{\rm{ }}BDC;{\rm{ }}CBD;{\rm{ }}DBC;{\rm{ }}CDB;{\rm{ }}DCB} \right\}.\)

Tập \(\Omega \) có 6 phần tử.

Vì việc xếp chỗ ngồi là ngẫu nhiên nên các kết quả có thể là đồng khả năng.

a) Có 4 kết quả thuận lợi cho biến cố E là BCD, BDC, CBD và DBC.

Vậy \(P\left( E \right) = \frac{4}{6} = \frac{2}{3}\).

b) Có 2 kết quả thuận lợi cho biến cố F là CBD và DBC.

Vậy \(P\left( F \right) = \frac{2}{6} = \frac{1}{3}\).


Cùng chủ đề:

Lý thuyết Phương trình quy về phương trình bậc nhất một ẩn Toán 9 Kết nối tri thức
Lý thuyết Tỉ số lượng giác của góc nhọn Toán 9 Kết nối tri thức
Lý thuyết Tứ giác nội tiếp Toán 9 Kết nối tri thức
Lý thuyết Vị trí tương đối của hai đường tròn Toán 9 Kết nối tri thức
Lý thuyết Vị trí tương đối của đường thẳng và đường tròn Toán 9 Kết nối tri thức
Lý thuyết Xác suất của biến cố liên quan tới phép thử Toán 9 Kết nối tri thức
Lý thuyết Đa giác đều Toán 9 Kết nối tri thức
Lý thuyết Định lí Viète và ứng dụng Toán 9 Kết nối tri thức
Lý thuyết Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên Toán 9 Kết nối tri thức
Lý thuyết Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác Toán 9 Kết nối tri thức
Toán 9 kết nối tri thức