Processing math: 100%

Lý thuyết Hình nón Toán 9 Cùng khám phá — Không quảng cáo

Toán 9 cùng khám phá


Lý thuyết Hình nón Toán 9 Cùng khám phá

1. Hình nón Chú ý: Cho hình nón có bán kính đáy r, chiều cao h và đường sinh l.

1. Hình nón

Chú ý:

Cho hình nón có bán kính đáy r, chiều cao h và đường sinh l. Khi đó h2+r2=l2.

Ví dụ:

Hình nón có:

+ A là đỉnh;

+ chiều cao là 6cm;

+ bán kính đáy là 4cm.

+ các đường sinh là: AB, AC, AD.

2. Diện tích xung quanh của hình nón

Diện tích xung quanh của hình nón

Diện tích xung quanh Sxq của hình nón có bán kính đáy r, độ dài đường sinh l là:

Sxq=πrl.

Diện tích toàn phần của hình nón

Diện tích toàn phần Stp của hình nón có bán kính đáy r, độ dài đường sinh l là:

Stp=Sxq+S=πrl+πr2 (S là diện tích đáy của hình nón).

Ví dụ:

Diện tích xung quanh của hình nón là:

Sxq=πrl=π.6.10=60π(cm2).

3. Thể tích của hình nón

Thể tích V của hình nón có bán kính đáy r và chiều cao h là:

V=13πr2h (S là diện tích đáy của hình nón).

Ví dụ:

Tam giác SOB vuông tại O nên theo định lí Pythagore ta có:

OB2+SO2=SB262+SO2=102SO2=10036=64SO=8cm.

Thể tích của hình nón là V=13πr2h=13π.62.8=96π(cm3).


Cùng chủ đề:

Lý thuyết Giải bài toán bằng cách lập phương trình bậc hai Toán 9 Cùng khám phá
Lý thuyết Góc nội tiếp Toán 9 Cùng khám phá
Lý thuyết Góc ở tâm, cung và hình quạt tròn Toán 9 Cùng khám phá
Lý thuyết Hàm số y = ax² (a ≠ 0) và đồ thị Toán 9 Cùng khám phá
Lý thuyết Hình cầu Toán 9 Cùng khám phá
Lý thuyết Hình nón Toán 9 Cùng khám phá
Lý thuyết Hình trụ Toán 9 Cùng khám phá
Lý thuyết Mô tả và biểu diễn dữ liệu Toán 9 Cùng khám phá
Lý thuyết Một số hệ thức về cạnh và góc trong tam giác vuông Toán 9 Cùng khám phá
Lý thuyết Phép quay Toán 9 Cùng khám phá
Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá