Lý thuyết Hình nón Toán 9 Cùng khám phá — Không quảng cáo

Toán 9 cùng khám phá


Lý thuyết Hình nón Toán 9 Cùng khám phá

1. Hình nón Chú ý: Cho hình nón có bán kính đáy r, chiều cao h và đường sinh l.

1. Hình nón

Chú ý:

Cho hình nón có bán kính đáy r, chiều cao h và đường sinh l. Khi đó \({h^2} + {r^2} = {l^2}\).

Ví dụ:

Hình nón có:

+ A là đỉnh;

+ chiều cao là 6cm;

+ bán kính đáy là 4cm.

+ các đường sinh là: AB, AC, AD.

2. Diện tích xung quanh của hình nón

Diện tích xung quanh của hình nón

Diện tích xung quanh \({S_{xq}}\) của hình nón có bán kính đáy r, độ dài đường sinh l là:

\({S_{xq}} = \pi rl\).

Diện tích toàn phần của hình nón

Diện tích toàn phần \({S_{tp}}\) của hình nón có bán kính đáy r, độ dài đường sinh l là:

\({S_{tp}} = {S_{xq}} + S = \pi rl + \pi {r^2}\) (S là diện tích đáy của hình nón).

Ví dụ:

Diện tích xung quanh của hình nón là:

\({S_{xq}} = \pi rl = \pi .6.10 = 60\pi \left( {c{m^2}} \right)\).

3. Thể tích của hình nón

Thể tích V của hình nón có bán kính đáy r và chiều cao h là:

\(V = \frac{1}{3}\pi {r^2}h\) (S là diện tích đáy của hình nón).

Ví dụ:

Tam giác SOB vuông tại O nên theo định lí Pythagore ta có:

\(\begin{array}{l}O{B^2} + S{O^2} = S{B^2}\\{6^2} + S{O^2} = {10^2}\\S{O^2} = 100 - 36 = 64\\SO = 8cm.\end{array}\)

Thể tích của hình nón là \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {.6^2}.8 = 96\pi \left( {c{m^3}} \right)\).


Cùng chủ đề:

Lý thuyết Giải bài toán bằng cách lập phương trình bậc hai Toán 9 Cùng khám phá
Lý thuyết Góc nội tiếp Toán 9 Cùng khám phá
Lý thuyết Góc ở tâm, cung và hình quạt tròn Toán 9 Cùng khám phá
Lý thuyết Hàm số y = ax² (a ≠ 0) và đồ thị Toán 9 Cùng khám phá
Lý thuyết Hình cầu Toán 9 Cùng khám phá
Lý thuyết Hình nón Toán 9 Cùng khám phá
Lý thuyết Hình trụ Toán 9 Cùng khám phá
Lý thuyết Mô tả và biểu diễn dữ liệu Toán 9 Cùng khám phá
Lý thuyết Một số hệ thức về cạnh và góc trong tam giác vuông Toán 9 Cùng khám phá
Lý thuyết Phép quay Toán 9 Cùng khám phá
Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá