Processing math: 100%

Lý thuyết Phương trình lượng giác cơ bản - SGK Toán 11 Cánh Diều — Không quảng cáo

Toán 11, giải toán lớp 11 cánh diều Bài 4. Phương trình lượng giác cơ bản Toán 11 Cánh diều


Lý thuyết Phương trình lượng giác cơ bản - SGK Toán 11 Cánh Diều

1. Khái niệm phương trình tương đương

1. Khái niệm phương trình tương đương

- Hai phương trình (cùng ẩn) được gọi là tương đương khi chúng có cùng tập nghiệm.

- Nếu phương trình f(x) =0 tương đương với phương trình g(x) =0 thì ta viết f(x)=0g(x)=0

*Chú ý: Hai phương trình vô nghiệm là hai phương trình tương đương.

- Các phép biến đổi tương đương:

+ Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức.

+ Nhân hoặc chia 2 vế với cùng một số khác 0 hoặc với cùng một biểu thức luôn có giá trị khác 0.

2. Phương trình sinx=m

Phương trình sinx=m có nghiệm khi và chỉ khi |m|1.

Khi |m|1sẽ tồn tại duy nhất α[π2;π2] thoả mãn sinα=m. Khi đó:

sinx=msinx=sinα [x=α+k2πx=πα+k2π(kZ)

* Chú ý:

a, Nếu số đo của góc αđược cho bằng đơn vị độ thì sinx=sinαo[x=αo+k360ox=180oαo+k360o(kZ)

b, Một số trường hợp đặc biệt

sinx=0x=kπ,kZ.sinx=1x=π2+k2π,kZ.sinx=1x=π2+k2π,kZ.

3. Phương trình cosx=m

Phương trình cosx=m có nghiệm khi và chỉ khi |m|1.

Khi |m|1 sẽ tồn tại duy nhất α[0;π] thoả mãn cosα=m. Khi đó:

cosx=mcosx=cosα [x=α+k2πx=α+k2π(kZ)

* Chú ý:

a, Nếu số đo của góc αđược cho bằng đơn vị độ thì cosx=cosαo[x=αo+k360ox=αo+k360o(kZ)

b, Một số trường hợp đặc biệt

cosx=0x=π2+kπ,kZ.cosx=1x=k2π,kZ.cosx=1x=π+k2π,kZ.

4. Phương trình tanx=m

Phương trình tanx=mcó nghiệm với mọi m.

Với mọi mR, tồn tại duy nhất α(π2;π2) thoả mãn tanα=m. Khi đó:

tanx=mtanx=tanαx=α+kπ,kZ.

*Chú ý: Nếu số đo của góc αđược cho bằng đơn vị độ thì

tanx=tanαox=αo+k180o,kZ.

5. Phương trình cotx=m

Phương trình cotx=mcó nghiệm với mọi m.

Với mọi mR, tồn tại duy nhất α(0;π) thoả mãn cotα=m. Khi đó:

cotx=mcotx=cotαx=α+kπ,kZ.

*Chú ý: Nếu số đo của góc αđược cho bằng đơn vị độ thì

cotx=cotαox=αo+k180o,kZ.

6. Sử dụng máy tính cầm tay tìm góc khi biết giá trị lượng giác của nó

Bước 1. Chọn đơn vị đo góc (độ hoặc radian).

Muốn tìm số đo độ, ta ấn: SHIFT MODE 3 (CASIO FX570VN).

Muốn tìm số đo radian, ta ấn: SHIFT MODE 4 (CASIO FX570VN).

Bước 2. Tìm số đo góc.

Khi biết SIN, COS, TANG của góc αta cần tìm bằng m, ta lần lượt ấn các phím SHIFT và một trong các phím SIN, COS, TANG rồi nhập giá trị lượng giác m và cuối cùng ấn phím  “BẰNG =”. Lúc này trên màn hình cho kết quả là số đo của góc α


Cùng chủ đề:

Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
Lý thuyết Khoảng cách - Toán 11 Cánh diều
Lý thuyết Phép chiếu song song. Hình biểu diễn của một hình không gian - SGK Toán 11 Cánh Diều
Lý thuyết Phép tính lôgarit - Toán 11 Cánh diều
Lý thuyết Phép tính lũy thừa với số mũ thực - Toán 11 Cánh diều
Lý thuyết Phương trình lượng giác cơ bản - SGK Toán 11 Cánh Diều
Lý thuyết Phương trình, bất phương trình mũ và lôgarit - Toán 11 Cánh diều
Lý thuyết Đạo hàm cấp hai - Toán 11 Cánh diều
Lý thuyết Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm - Toán 11 Cánh diều
Lý thuyết Đường thẳng và mặt phẳng song song - SGK Toán 11 Cánh Diều
Lý thuyết Đường thẳng và mặt phẳng trong không gian - SGK Toán 11 Cánh Diều