Lý thuyết Phương trình quy về phương trình bậc nhất một ẩn Toán 9 Cùng khám phá — Không quảng cáo

Toán 9 cùng khám phá


Lý thuyết Phương trình quy về phương trình bậc nhất một ẩn Toán 9 Cùng khám phá

1. Phương trình tích có dạng (left( {ax + b} right)left( {cx + d} right) = 0left( {a ne 0,c ne 0} right)) Cách giải phương trình tích

1. Phương trình tích có dạng \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\left( {a \ne 0,c \ne 0} \right)\)

Cách giải phương trình tích

Để giải phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\) với \(a \ne 0\) và \(c \ne 0\), ta có thể làm như sau:

Bước 1. Giải hai phương trình \(ax + b = 0\) và \(cx + d = 0\)

Bước 2. Nghiệm của mỗi phương trình ở Bước 1 là nghiệm của phương trình \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\).

Ví dụ 1: Giải phương trình \(\left( {2x + 1} \right)\left( {3x - 1} \right) = 0\)

Lời giải:

Để giải phương trình  \(\left( {2x + 1} \right)\left( {3x - 1} \right) = 0\), ta giải hai phương trình sau:

*) \(2x + 1 = 0\)

\(2x =  - 1\)

\(x =  - \frac{1}{2}\).

*) \(3x - 1 = 0\)

\(3x = 1\)

\(x = \frac{1}{3}\).

Vậy phương trình đã cho có hai nghiệm là \(x =  - \frac{1}{2}\) và \(x = \frac{1}{3}\).

Ví dụ 2: Giải phương trình \({x^2} - x =  - 2x + 2\).

Lời giải:

Biến đổi phương trình đã cho về phương trình tích như sau:

\(\begin{array}{l}{x^2} - x =  - 2x + 2\\{x^2} - x + 2x - 2 = 0\\x\left( {x - 1} \right) + 2\left( {x - 1} \right) = 0\\\left( {x + 2} \right)\left( {x - 1} \right) = 0.\end{array}\)

Ta giải hai phương trình sau:

*) \(x + 2 = 0\)

\(x =  - 2\).

*) \(x - 1 = 0\)

\(x = 1\).

Vậy phương trình đã cho có hai nghiệm là \(x =  - 2\) và \(x = 1\).

2. Phương trình chứa ẩn ở mẫu

Điều kiện xác định của phương trình chứa ẩn ở mẫu

Điều kiện xác định của phương trình chứa ẩn ở mẫu là điều kiện của ẩn để tất cả các mẫu trong phương trình đều khác 0.

Ví dụ:

- Phương trình \(\frac{{5x + 2}}{{x - 1}} = 0\) có điều kiện xác định là \(x - 1 \ne 0\) hay \(x \ne 1\).

- Phương trình \(\frac{1}{{x + 1}} = 1 + \frac{1}{{x - 2}}\) có điều kiện xác định là \(x + 1 \ne 0\) và \(x - 2 \ne 0\) hay \(x \ne  - 1\) và \(x \ne 2\).

Các bước giải phương trình chứa ẩn ở mẫu

Bước 1. Tìm điều kiện xác định của phương trình.

Bước 2. Quy đồng mẫu hai vế của phương trình rồi bỏ mẫu.

Bước 3. Giải phương trình vừa nhận được.

Bước 4. Kiểm tra điều kiện xác định và kết luận nghiệm của phương trình ban đầu.

Ví dụ: Giải phương trình \(\frac{2}{{x + 1}} + \frac{1}{{x - 2}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\)

Lời giải:

Điều kiện xác định \(x \ne  - 1\) và \(x \ne 2\).

\(\frac{2}{{x + 1}} + \frac{1}{{x - 2}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\)

\(\frac{{2\left( {x - 2} \right) + \left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 2} \right)}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\)

\(2\left( {x - 2} \right) + \left( {x + 1} \right) = 3\).

\(\begin{array}{l}2\left( {x - 2} \right) + \left( {x + 1} \right) = 3\\2x - 4 + x + 1 = 3\\3x - 3 = 3\\3x = 6\\x = 2\end{array}\)

Ta thấy \(x = 2\) không thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình \(\frac{2}{{x + 1}} + \frac{1}{{x - 2}} = \frac{3}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\) vô nghiệm.


Cùng chủ đề:

Lý thuyết Mô tả và biểu diễn dữ liệu Toán 9 Cùng khám phá
Lý thuyết Một số hệ thức về cạnh và góc trong tam giác vuông Toán 9 Cùng khám phá
Lý thuyết Phép quay Toán 9 Cùng khám phá
Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
Lý thuyết Phương trình bậc hai một ẩn Toán 9 Cùng khám phá
Lý thuyết Phương trình quy về phương trình bậc nhất một ẩn Toán 9 Cùng khám phá
Lý thuyết Phương trình và hệ hai phương trình bậc nhất hai ẩn Toán 9 Cùng khám phá
Lý thuyết Tần số Toán 9 Cùng khám phá
Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
Lý thuyết Tiếp tuyến của đường tròn Toán 9 Cùng khám phá