Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
1. Tần số tương đối và bảng tần số tương đối, biểu đồ tần số tương đối ở dạng biểu đồ cột hoặc biểu đồ quạt tròn Tần số tương đối Bảng tần số tương đối ở dạng bảng ngang
1. Tần số tương đối và bảng tần số tương đối, biểu đồ tần số tương đối ở dạng biểu đồ cột hoặc biểu đồ quạt tròn
Tần số tương đối
![]() |
Bảng tần số tương đối ở dạng bảng ngang
Giả sử dấu hiệu điều tra có các giá trị x1,x2,...,xk (k là một số nguyên dương) và tần số tương ứng của chúng trong mẫu dữ liệu là n1,n2,...,nk. Tần số tương đối của giá trị xi(i=1,2,...,k), kí hiệu fi, là số được tính theo công thức fi=niN Trong đó N=n1+n2+...+nk là tổng các tần số (tức là kích thước mẫu) Bảng tần số tương đối là bảng gồm hai dòng (cột), trong đó dòng (cột) thứ nhất ghi các giá trị của dấu hiệu điều tra, dòng (cột) thứ hai ghi tần số tương đối ứng với mỗi giá trị. |
Tần số tương đối thường được viết ở dạng % để không phải quy đồng mẫu mỗi khi so sánh chúng và để thuận tiện cho việc đưa ra dự đoán về một vấn đề, một hiện tượng nào đó liên quan đến mẫu dữ liệu. Khi đó công thức tính tần số tương đối được viết là:
fi=niN.100%
Ví dụ: Cho bảng thống kê số anh, chị, em ruột của các bạn trong lớp:
Tổng số bạn là n=30.
Số anh, chị, em ruột là x1=0;x2=1;x3=2;x4=3 tương ứng với m1=8;m2=12;m3=6,m4=4.
Do đó các tần số tương đối cho các giá trị x1,x2,x3,x4 lần lượt là:
f1=830≈26,7%;f2=1230=40%;f3=630=20%;f4=430≈13,3%.
Ta có bảng tần số tương đối sau:
Lưu ý:
- Trong một mẫu dữ liệu, tổng các tần số tương đối luôn bằng 1 nếu chúng được viết ở dạng thương của ni và N, và luôn luôn bằng 100% nếu chúng được viết ở dạng phần trăm.
- Bảng có cả dòng (cột) tần số và dòng (cột) tần số tương đối được gọi là bảng tần số - tần số tương đối .
Nhận xét: Ý nghĩa của tần số tương đối
- Tần số tương đối giúp ta hiểu rõ tỉ lệ xuất hiện nhiều hay ít của mỗi giá trị trong mẫu dữ liệu. Nếu như tần số chỉ cho phép so sánh phân bố của dữ liệu trong cùng một mẫu hay trong hai mẫu, có kích thước bằng nhau thì tần số tương đối là công cụ để so sánh phân bố của dữ liệu trong những mẫu không cùng kích thước.
- Trong thực tiễn, nếu mẫu dữ liệu đại diện được cho tổng thể thì có thể sử dụng tần số tương đối của mẫu để đưa ra một kết luận hay một quyết định cho tổng thể. Điều này không thể làm được nếu chỉ dựa vào tần số.
2. Biểu đồ tần số tương đối
Bảng tần số tương đối có thể được biểu thị bởi biểu đồ cột và biểu đồ hình quạt tròn. Các biểu đồ này được gọi là biểu đồ tần số tương đối (dạng cột và dạng hình quạt tròn). |
Vẽ biểu đồ tần số ở dạng biểu đồ cột
Để vẽ biểu đồ tần số tương đối ở dạng biểu đồ cột của một mẫu dữ liệu thống kê, ta có thể thực hiện các bước sau: Bước 1. Lập bảng tần số tương đối của mẫu số liệu thống kê đó Bước 2. Vẽ biểu đồ cột biểu diễn số liệu thống kê trong bảng tần số tương đối nhận được ở Bước 1. |
Vẽ biểu đồ tần số ở dạng biểu đồ hình quạt tròn
Vì đường tròn là cung 360∘ nên hình quạt tròn biểu diễn 1% tương ứng với cung có số đo 360∘100=3,6∘. Suy ra hình quạt tròn biểu diễn f% ứng với f.3,6∘.
Để vẽ biểu đồ tần số tương đối ở dạng biểu đồ hình quạt tròn, ta vẽ một hình tròn rồi chia nó thành các hình quạt biểu diễn các tần số tương đối. Hình quạt tròn biểu diễn tần số tương đối fi=ai% ứng với cung có số đo ai.3,6∘. |
Lưu ý:
- Vì fi=niN.100% nên khi có bảng tần số thì ta có thể xác định hình quạt biểu diễn tần số tương đối fi qua cung có số đo niN.360∘.
- Để xác định cung khi biết số đo của nó, ta dựa vào tính chất sau: Trong đường tròn, số đo cung nhỏ ⌢AmB bằng số đo của góc ở tâm chắn cung đó, số đo cung lớn ⌢AnB bằng hiệu giữa 360∘ và số đo cung ⌢AmB.
Ví dụ: Cho bảng tần số tương đối về loại phim yêu thích của các học sinh trong lớp 9A như sau:
Biểu đồ tần số tương đối ở dạng biểu đồ cột của mẫu số liệu thống kê đó là:
Biểu đồ tần số tương đối ở dạng biểu đồ hình quạt tròn của mẫu số liệu thống kê đó là: