Lý thuyết Ước và bội Toán 6 Chân trời sáng tạo — Không quảng cáo

Toán 6, giải toán lớp 6 chân trời sáng tạo Bài 9. Ước và bội


Lý thuyết Ước và bội Toán 6 Chân trời sáng tạo

Tải về

Lý thuyết Ước và bội Toán 6 Chân trời sáng tạo ngắn gọn, đầy đủ, dễ hiểu

I. Ước và bội

- Nếu có số tự nhiên \(a\) chia hết cho số tự nhiên \(b\) thì ta nói \(a\) bội của \(b,\) còn \(b\) ước của \(a.\)

- Kí hiệu: Ư \(\left( a \right)\) là tập hợp các ước của \(a\) \(B\left( b \right)\) là tập hợp các bội của \(b\) .

- Với \(a\) là số tự nhiên khác 0 thì:

+ \(a\) là ước của \(a\)

+ \(a\) là bội của \(a\)

+ 0 là bội của \(a\)

+ 1 là ước của \(a\)

Ví dụ : \(12 \vdots 6 \Rightarrow 12\) là bội của \(6.\) Còn \(6\) được gọi là ước của \(12\)

0 và 12 là bội của 12

1 và 12 là các ước của 12.

II. Cách tìm ước

Ta có thể tìm các ước của \(a\)\(\left( {a > 1} \right)\)  bằng cách lần lượt chia \(a\) cho các số tự nhiên từ \(1\) đến \(a\) để xét xem \(a\) chia hết cho những số nào, khi đó các số ấy là ước của \(a.\)

Ví dụ :

16: 1 =16; 16: 2 =8; 16: 4 =4; 16: 8 =2; 16: 16 =1

Vậy các ước của 16 là 1;2;4;8;16 .

Tập hợp các ước của 16 là:  Ư \(\left( {16} \right) = \left\{ {1;2;4;8;16} \right\}\)

III. Cách tìm bội

Ta có thể tìm các bội của một số tự nhiên \(a\) khác \(0\) bằng cách nhân số đó lần lượt với \(0,1,2,3,...\)
Chú ý: Bội của \(a\) có dạng tổng quát là \(a.k\) với \(k \in \mathbb{N}\). Ta có thể viết:\(B\left( a \right) = \left\{ {a.k\left| {k \in \mathbb{N}} \right.} \right\}\)

Ví dụ:

Ta lấy 6 nhân với từng số 0 thì được 0 nên 0 là bội của 6, lấy 6.1=6 nên 6 là bội của 6, 6.2=12 nên 12 là bội của 6,...

Vậy \(B\left( 6 \right) = \left\{ {0;6;12;18;...} \right\}\)

CÁC DẠNG TOÁN VỀ ƯỚC VÀ BỘI

I. Viết tất cả các số là ước của một số cho trước và thỏa mãn điều kiện cho trước

Phương pháp:

Tìm trong các số thỏa mãn điều kiện cho trước những số là ước của số đã cho.

Ví dụ:

Tìm các số tự nhiên $a$ sao cho \(a \in \) Ư$\left( {32} \right)$ và $a > 10$.

Giải:

$\,\left\{ \begin{array}{l}a \in Ư\left( {32} \right)\\a > 10\end{array} \right. \Rightarrow \,\left\{ \begin{array}{l}a \in {\rm{\{ 1; 2; 4; 8; 16; 32\} }}\\a > 10\end{array} \right.$$ \Rightarrow a \in \left\{ {16;32} \right\}$

II. Viết tất cả các số là bội của một số cho trước và thỏa mãn điều kiện cho trước

Phương pháp:

Tìm trong các số thỏa mãn điều kiện cho trước những số là bội của số đã cho.

Ví dụ:

Tìm các số tự nhiên $x\; \in B\left( {8} \right)$ và $10 < x < 30$

Giải:

$\,\left\{ \begin{array}{l}x \in B\left( {8} \right)\\10 < x < 30\end{array} \right. \Rightarrow \,\left\{ \begin{array}{l}x \in {\rm{\{ 0; 8; 16; 24; 32;...\} }}\\10 < x < 30\end{array} \right.$$ \Rightarrow x \in \left\{ {16;24} \right\}$ Vậy có \(2\) số thỏa mãn yêu cầu bài toán là $16$ và $24$.

III. Bài toán đưa về việc tìm ước hoặc bội của một số cho trước

Phương pháp:

+ Phân tích đề bài chuyển bài toán về việc tìm ước hoặc bội của một số cho trước.

+ Áp dụng cách tìm ước hoặc bội của một số cho trước.


Cùng chủ đề:

Lý thuyết Thứ tự trong tập hợp số nguyên Tóan 6 Chân trời sáng tạo
Lý thuyết Tính chất cơ bản của phân số
Lý thuyết Tỉ số và tỉ số phần trăm Toán 6 Chân trời sáng tạo
Lý thuyết Trung điểm của đoạn thẳng Toán 6 Chân trời sáng tạo
Lý thuyết Ước chung. Ước chung lớn nhất Toán 6 Chân trời sáng tạo
Lý thuyết Ước và bội Toán 6 Chân trời sáng tạo
Lý thuyết Vai trò của tính đối xứng trong thế giới tự nhiên Toán 6 Chân trời sáng tạo
Lý thuyết Xác suất thực nghiệm Toán 6 Chân trời sáng tạo
Lý thuyết ôn tập chương 1
Lý thuyết ôn tập chương 2
Lý thuyết ôn tập chương 3