Trả lời câu hỏi 1 Bài 7 trang 28 SGK Toán 9 Tập 1
Khử mẫu của biểu thức lấy căn
Khử mẫu của biểu thức lấy căn:
LG a
\(\displaystyle \sqrt {{4 \over 5}} \)
Phương pháp giải:
Sử dụng công thức:
Với các biểu thức \(A,B\) mà \(A.B \ge 0;B \ne 0\) ta có \(\sqrt {\dfrac{A}{B}} = \dfrac{{\sqrt {AB} }}{{\left| B \right|}} = \left\{ \begin{array}{l}\dfrac{{\sqrt {AB} }}{B}\,\,\,khi\,B > 0\\ - \dfrac{{\sqrt {AB} }}{B}\,khi\,\,B < 0\end{array} \right.\)
Lời giải chi tiết:
\(\displaystyle \sqrt {{4 \over 5}} = \sqrt {{{4.5} \over {5.5}}} = {{\sqrt {4.5} } \over {\sqrt {{5^2}} }} = {{2\sqrt 5 } \over 5}\)
LG b
\(\displaystyle \sqrt {{3 \over {125}}} \)
Phương pháp giải:
Sử dụng công thức:
Với các biểu thức \(A,B\) mà \(A.B \ge 0;B \ne 0\) ta có \(\sqrt {\dfrac{A}{B}} = \dfrac{{\sqrt {AB} }}{{\left| B \right|}} = \left\{ \begin{array}{l}\dfrac{{\sqrt {AB} }}{B}\,\,\,khi\,B > 0\\ - \dfrac{{\sqrt {AB} }}{B}\,khi\,\,B < 0\end{array} \right.\)
Lời giải chi tiết:
\(\displaystyle \sqrt {{3 \over {125}}} = \sqrt {{{3.125} \over {125.125}}} = {{\sqrt {3.125} } \over {\sqrt {{{125}^2}} }}\)\(\displaystyle= {{\sqrt {3.5.25} } \over {\sqrt {{{125}^2}} }} = {{5\sqrt {15} } \over {125}} = {{\sqrt {15} } \over {25}}\)
LG c
\(\displaystyle \sqrt {{3 \over {2{a^3}}}} \) với a > 0
Phương pháp giải:
Sử dụng công thức:
\(+) \sqrt {A.B} = \sqrt A .\sqrt B \left( {A \ge 0,B \ge 0} \right)\)
+) Với các biểu thức \(A,B\) mà \(A.B \ge 0;B \ne 0\) ta có \(\sqrt {\dfrac{A}{B}} = \dfrac{{\sqrt {AB} }}{{\left| B \right|}} = \left\{ \begin{array}{l}\dfrac{{\sqrt {AB} }}{B}\,\,\,khi\,B > 0\\ - \dfrac{{\sqrt {AB} }}{B}\,khi\,\,B < 0\end{array} \right.\)
Lời giải chi tiết:
\(\sqrt {\dfrac{3}{{2{a^3}}}} = \dfrac{{\sqrt 3 }}{{\sqrt {2{a^3}} }} = \dfrac{{\sqrt 3 }}{{\sqrt {{a^2}.2a} }} = \dfrac{{\sqrt 3 }}{{\left| a \right|\sqrt {2a} }} = \dfrac{{\sqrt 3 }}{{a\sqrt {2a} }}\) \( = \dfrac{{\sqrt 3 .\sqrt {2a} }}{{a\sqrt {2a} .\sqrt {2a} }} = \dfrac{{\sqrt {6a} }}{{2{a^2}}}\)