Trắc nghiệm toán 6 các dạng toán bài 12 chương 1 chân trời sáng tạo có đáp án — Không quảng cáo

Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo có đáp án Bài tập trắc nghiệm Chương 1: Số tự nhiên


Trắc nghiệm Các dạng toán về ước chung, ước chung lớn nhất Toán 6 Chân trời sáng tạo

Đề bài

Câu 1 :

ƯCLN của $a$ và $b$ là:

  • A.

    Bằng $b$ nếu $a$ chia hết cho $b$

  • B.

    Bằng $a$ nếu $a$ chia hết cho $b$

  • C.

    Là ước chung nhỏ nhất của $a$ và $b$

  • D.

    Là hiệu của $2$ số $a$ và $b$

Câu 2 :

Tìm ƯCLN của $15,45$ và $225$.

  • A.

    $18$

  • B.

    $3$

  • C.

    $15$

  • D.

    $5$

Câu 3 :

Cho \(a = {3^2}.5.7;b = {2^4}.3.7\). Tìm ƯCLN của \(a\) và \(b.\)

  • A.

    ƯCLN$\left( {a,b} \right) = 3.7$

  • B.

    ƯCLN$\left( {a,b} \right) = {3^2}{.7^2}$

  • C.

    ƯCLN$\left( {a,b} \right) = {2^4}.5$

  • D.

    ƯCLN$\left( {a,b} \right) = {2^4}{.3^2}.5.7$

Câu 4 :

Chọn khẳng định đúng:

  • A.

    Mọi số tự nhiên đều có ước chung với nhau.

  • B.

    Mọi số tự nhiên đều có ước là 0

  • C.

    Số nguyên tố chỉ có đúng $1$ ước là chính nó.

  • D.

    Hai số nguyên tố khác nhau thì không có ước chung

Câu 5 :

Phân số \(\dfrac{4}{9}\)  bằng mấy phân số trong các phân số sau: \(\dfrac{{48}}{{108}};\dfrac{{80}}{{180}};\dfrac{{60}}{{130}};\dfrac{{135}}{{270}}\)?

  • A.

    1

  • B.

    2

  • C.

    3

  • D.

    4

Câu 6 :

Tìm số tự nhiên lớn nhất biết \(18 \, \vdots \, x\) và \(32 \, \vdots \, x.\)

  • A.

    $4$

  • B.

    $2$

  • C.

    $3$

  • D.

    $6$

Câu 7 :

Tìm các ước chung của \(18;30;42.\)

  • A.

    \(\left\{ {2;3;6} \right\}\)

  • B.

    \(\left\{ {1;2;3;6} \right\}\)

  • C.

    \(\left\{ {1;2;3} \right\}\)

  • D.

    \(\left\{ {1;2;3;6;9} \right\}\)

Câu 8 :

Tìm \(x\) biết $120$ $ \vdots $ $x$; $200$ $ \vdots $ $x$ và \(x < 40\)

  • A.

    \(x \in \left\{ {1;2;4;5;8;10;20} \right\}\)

  • B.

    \(x \in \left\{ {2;5;10;20;40} \right\}\)

  • C.

    \(x \in \left\{ {1;2;5;10;20;40} \right\}\)

  • D.

    \(x \in \left\{ {2;5;10;20} \right\}\)

Câu 9 :

Tìm \(x\) lớn nhất biết \(x + 220\) và \(x + 180\) đều chia hết cho \(x.\)

  • A.

    $15$

  • B.

    $10$

  • C.

    $20$

  • D.

    $18$

Câu 10 :

Một căn phòng hình chữ nhật dài $680$cm, rộng  $480$cm. Người ta muốn lát kín căn phòng đó bằng gạch hình vuông mà không có viên gạch nào bị cắt xén. Hỏi viên gạch có độ dài lớn nhất là bao nhiêu?

  • A.

    $5\,cm$

  • B.

    $10\,cm$

  • C.

    $20\,cm$

  • D.

    $40\,cm$

Câu 11 :

Một khu đất hình chữ nhật có chiều dài $60$m, rộng $24$m. Người ta chia thành những thửa đất hình vuông bằng nhau, để mỗi thửa đất đó có diện tích lớn nhất thì độ dài cạnh mỗi thửa đất đó là bao nhiêu?

  • A.

    $8\,m$

  • B.

    $24\,m$

  • C.

    $12\,m$

  • D.

    $6\,m$

Câu 12 :

Hoa có $48$ viên bi đỏ, $30$ viên bi xanh và $60$ viên bi vàng. Hoa muốn chia đều số bi vào các túi, sao cho mỗi túi có đủ $3$ loại bi. Hỏi Hoa có thể chia vào nhiều nhất bao nhiêu túi mà mỗi túi có số bi mỗi màu bằng nhau.

  • A.

    $6$

  • B.

    $8$

  • C.

    $4$

  • D.

    $12$

Câu 13 :

Chọn câu đúng.

  • A.

    ƯCLN$\left( {44;56} \right) = $ ƯCLN\(\left( {48;72} \right)\)

  • B.

    ƯCLN$\left( {44;56} \right) < $ ƯCLN\(\left( {48;72} \right)\)

  • C.

    ƯCLN$\left( {44;56} \right) > $ ƯCLN\(\left( {48;72} \right)\)

  • D.

    ƯCLN$\left( {44;56} \right) = 1; $ ƯCLN\(\left( {48;72} \right) = 3\)

Câu 14 :

Tìm $x$  lớn nhất biết $x + 160$ và $x + 300$ đều là bội của $x?$

  • A.

    $18$

  • B.

    $20$

  • C.

    $10$

  • D.

    $4$

Câu 15 :

Một lớp học có $18$ nam và $24$ nữ được chia đều vào các nhóm sao cho số nam trong các nhóm bằng nhau và số nữ trong các nhóm bằng nhau. Hỏi chia được nhiều nhất bao nhiêu nhóm?

  • A.

    $24$

  • B.

    $18$

  • C.

    $12$

  • D.

    $6$

Câu 16 :

Lớp 6A có $40$ học sinh, lớp 6B có \(48\) học sinh, lớp 6C có \(32\) học sinh. Ba lớp cùng xếp thành hàng như nhau và không lớp nào lẻ hàng. Tính số hàng dọc nhiều nhất mỗi lớp có thể xếp được?

  • A.

    $4$

  • B.

    $12$

  • C.

    $8$

  • D.

    $6$

Lời giải và đáp án

Câu 1 :

ƯCLN của $a$ và $b$ là:

  • A.

    Bằng $b$ nếu $a$ chia hết cho $b$

  • B.

    Bằng $a$ nếu $a$ chia hết cho $b$

  • C.

    Là ước chung nhỏ nhất của $a$ và $b$

  • D.

    Là hiệu của $2$ số $a$ và $b$

Đáp án : A

Phương pháp giải :

- Dựa vào kiến thức: nếu số tự nhiên $a$ chia hết cho số tự nhiên $b$ thì ta nói $a$ là bội của $b$, còn $b$ là ước của $a$.

- Dựa vào kiến thức khái niệm về  ƯCLN của $2$ hay nhiều số là số lớn nhất trong tập hợp ước chung của các số đó.

Lời giải chi tiết :

Nếu \(a\) chia hết cho \(b\) thì \(b\) là ước của \(a\).

Mà \(b\) cũng là ước của \(b\) nên \(b \in \)ƯC\(\left( {a;b} \right)\)

Hơn nữa \(b\) là ước lớn nhất của \(b\) nên ƯCLN\(\left( {a,b} \right) = b\).

Câu 2 :

Tìm ƯCLN của $15,45$ và $225$.

  • A.

    $18$

  • B.

    $3$

  • C.

    $15$

  • D.

    $5$

Đáp án : C

Phương pháp giải :

- Phân tích mỗi số ra thừa số nguyên tố.

- Tìm thừa số nguyên tố chung.

- Lập tích của các số tìm được với số mũ nhỏ nhất.

Tích đó chính là ước chung lớn nhất.

Lời giải chi tiết :

Ta có: \(15 = 3.5;\) \(45 = {3^2}.5;\) \(225 = {5^2}{.3^2}\)

Nên ƯCLN\(\left( {15;45;225} \right) = 3.5 = 15.\)

Câu 3 :

Cho \(a = {3^2}.5.7;b = {2^4}.3.7\). Tìm ƯCLN của \(a\) và \(b.\)

  • A.

    ƯCLN$\left( {a,b} \right) = 3.7$

  • B.

    ƯCLN$\left( {a,b} \right) = {3^2}{.7^2}$

  • C.

    ƯCLN$\left( {a,b} \right) = {2^4}.5$

  • D.

    ƯCLN$\left( {a,b} \right) = {2^4}{.3^2}.5.7$

Đáp án : A

Phương pháp giải :

Tìm ƯCLN bằng cách lập tích các thừa số chung. Mỗi thừa số lấy với số mũ nhỏ nhất.

Lời giải chi tiết :

Ta có \(a = {3^2}.5.7;b = {2^4}.3.7\) nên ƯCLN$\left( {a,b} \right) = 3.7$

Câu 4 :

Chọn khẳng định đúng:

  • A.

    Mọi số tự nhiên đều có ước chung với nhau.

  • B.

    Mọi số tự nhiên đều có ước là 0

  • C.

    Số nguyên tố chỉ có đúng $1$ ước là chính nó.

  • D.

    Hai số nguyên tố khác nhau thì không có ước chung

Đáp án : A

Phương pháp giải :

- Áp dụng kiến thức:

Mọi số tự nhiên đều có ước là $1$.

Số nguyên tố có $2$ ước là $1$  và chính nó.

Mọi số nguyên tố khác nhau đều có ước chung duy nhất là $1$.

Lời giải chi tiết :

A. Đáp án này đúng vì mọi số tự nhiên đều có ước chung là $1$

B. Đáp án này sai, vì $0$ không là ước của $1$ số nào cả.

C. Đáp án này sai, vì số nguyên tố có $2$ ước là $1$ và chính nó.

D. Đáp án này sai, vì $2$ số nguyên tố có ước chung là $1$.

Câu 5 :

Phân số \(\dfrac{4}{9}\)  bằng mấy phân số trong các phân số sau: \(\dfrac{{48}}{{108}};\dfrac{{80}}{{180}};\dfrac{{60}}{{130}};\dfrac{{135}}{{270}}\)?

  • A.

    1

  • B.

    2

  • C.

    3

  • D.

    4

Đáp án : B

Phương pháp giải :

- Rút gọn các phân số đã cho về phân số tối giản.

- Nếu phân số tối giản là \(\dfrac{4}{9}\) thì phân số ban đầu bằng \(\dfrac{4}{9}\).

Lời giải chi tiết :

ƯCLN(48,108)=12

=>\(\dfrac{{48}}{{108}} = \dfrac{4}{9}\)

ƯCLN(80,180)=20

=> \(\dfrac{{80}}{{180}} = \dfrac{4}{9}\)

ƯCLN(60,130)=10

=>\(\dfrac{{60}}{{130}} = \dfrac{6}{{13}}\)

ƯCLN(135,270)=135

=>\(\dfrac{{135}}{{270}} = \dfrac{1}{2}\)

Phân số  \(\dfrac{4}{9}\)  bằng các phân số \(\dfrac{{48}}{{108}};\dfrac{{80}}{{180}}\).

Vậy có 2 phân số bằng \(\dfrac{4}{9}\)

Câu 6 :

Tìm số tự nhiên lớn nhất biết \(18 \, \vdots \, x\) và \(32 \, \vdots \, x.\)

  • A.

    $4$

  • B.

    $2$

  • C.

    $3$

  • D.

    $6$

Đáp án : B

Phương pháp giải :

Vì $x$ lớn nhất và \(18 \, \vdots \, x\) và \(32 \,  \vdots \, x.\) Nên $x$ cần tìm chính là ƯCLN$\left( {32;18} \right)$ Bài toán quy về bài toán tìm ƯCLN

Lời giải chi tiết :

Ta có \(18 \, \vdots \, x \Rightarrow x \in \) Ư$\left( {18} \right)$; \(32 \, \vdots \, x \)\(\Rightarrow x \in \) Ư\(\left( {32} \right)\) suy ra \(x \in \) ƯC\(\left( {18;32} \right)\)

Mà \(x\) lớn nhất nên \(x = \) ƯCLN\(\left( {18;32} \right)\)

Ta có \(18 = {2.3^2};\,32 = {2^5}\) nên ƯCLN\(\left( {18;32} \right) = 2\)

Hay \(x = 2.\)

Câu 7 :

Tìm các ước chung của \(18;30;42.\)

  • A.

    \(\left\{ {2;3;6} \right\}\)

  • B.

    \(\left\{ {1;2;3;6} \right\}\)

  • C.

    \(\left\{ {1;2;3} \right\}\)

  • D.

    \(\left\{ {1;2;3;6;9} \right\}\)

Đáp án : B

Phương pháp giải :

+ Tìm các ước của \(18;30;42.\)

+ Tìm các số là ước của cả ba số \(18;30;42.\)

Lời giải chi tiết :

+) Ư\(\left( {18} \right) = \left\{ {1;2;3;6;9;18} \right\}\)

+) Ư\(\left( {30} \right) = \left\{ {1;2;3;5;6;10;15;30} \right\}\)

+) Ư\(\left( {42} \right) = \left\{ {1;2;3;6;7;12;14;21;42} \right\}\)

Nên ƯC\(\left( {18;30;42} \right) = \left\{ {1;2;3;6} \right\}\)

Câu 8 :

Tìm \(x\) biết $120$ $ \vdots $ $x$; $200$ $ \vdots $ $x$ và \(x < 40\)

  • A.

    \(x \in \left\{ {1;2;4;5;8;10;20} \right\}\)

  • B.

    \(x \in \left\{ {2;5;10;20;40} \right\}\)

  • C.

    \(x \in \left\{ {1;2;5;10;20;40} \right\}\)

  • D.

    \(x \in \left\{ {2;5;10;20} \right\}\)

Đáp án : A

Phương pháp giải :

+Tìm các ước chung nhỏ hơn \(40\) của \(120\) và \(200.\)

Lời giải chi tiết :

+) Vì \(120 \, \vdots \, x\) nên \(x \in \)Ư\(\left( {120} \right)\)\( = \left\{ {1;2;3;4;5;6;8;10;12;15;20;24;30;40;60;120} \right\}\)

+) Vì \(200 \, \vdots \, x\) nên \(x \in \)Ư\(\left( {200} \right)\)\( = \left\{ {1;2;4;5;8;10;20;25; 40;50;100;200} \right\}\)

Nên \(x \in \)ƯC\(\left( {120;200} \right) = \left\{ {1;2;4;5;8;10;20;40} \right\}\) mà \(x < 40\) nên \(x \in \left\{ {1;2;4; 5;8;10;20} \right\}.\)

Câu 9 :

Tìm \(x\) lớn nhất biết \(x + 220\) và \(x + 180\) đều chia hết cho \(x.\)

  • A.

    $15$

  • B.

    $10$

  • C.

    $20$

  • D.

    $18$

Đáp án : C

Phương pháp giải :

Vì $x + 220$ và $x + 180$ là bội của $x$ nên $x \in $ƯC$\left( {x + 220;x + 180} \right)$ Vì $x \, \vdots \, x$ và $x$  lớn nhất $ \Rightarrow x = $ƯCLN$\left( {220;180} \right)$ Bài toán quy về bài toán tìm ước chung lớn nhất

Lời giải chi tiết :

Vì $x + 220$ và $x + 180$ đều là bội của $x$ nên $\left( {x + 220} \right) \vdots \, x$ và $\left( {x + 180} \right) \vdots \, x$ Vì $x \, \vdots \, x$ $ \Rightarrow 220 \, \vdots \, x$ và $180 \, \vdots \, x$ $ \Rightarrow x \in $ ƯC$\left( {220;180} \right)$ Vì $x$ lớn nhất $ \Rightarrow x \in $ƯCLN$\left( {220;180} \right)$ $220 = {2^2}.5.11$ ; $180 = {2^2}.3^2.5$ $ \Rightarrow x = $ƯCLN\(\left( {220;180} \right) = \) ${2^2}.5 = 20$

Câu 10 :

Một căn phòng hình chữ nhật dài $680$cm, rộng  $480$cm. Người ta muốn lát kín căn phòng đó bằng gạch hình vuông mà không có viên gạch nào bị cắt xén. Hỏi viên gạch có độ dài lớn nhất là bao nhiêu?

  • A.

    $5\,cm$

  • B.

    $10\,cm$

  • C.

    $20\,cm$

  • D.

    $40\,cm$

Đáp án : D

Phương pháp giải :

Vì muốn lát gạch kín căn phòng mà không có viên gạch nào bị cắt xén thì độ dài cạnh viên gạch phải là ước của $680$ và $480.$ Để viên gạch có độ dài lớn nhất thì đồ dài cạnh viên gạch bằng ƯCLN$\left( {680;480} \right).$

Lời giải chi tiết :

Ta có: Gọi chiều dài viên gạch là $x.$ Để lát kín căn phòng mà không có có viên gạch nào bị cắt xén thì $x$ phải là ước của chiều dài và chiều rộng căn phòng Hay $680 \, \vdots \, x$ và $480 \, \vdots \, x$ $ \Rightarrow x \in $ ƯC$\left( {680;480} \right)$ Để x là lớn nhất $ \Rightarrow x = $ƯCLN$\left( {680;480} \right)$ Ta có: $680 = {2^3}.5.17;$ $480 = {2^5}.3.5$ $ \Rightarrow x = $ ƯCLN$\left( {680;480} \right)$$ = {2^3}.5 = 40$ Vậy để lát kín căn phòng mà không có viên gạch nào bị cắt xén thì độ dài cạnh viên gạch lớn nhất là $40$ $cm.$

Câu 11 :

Một khu đất hình chữ nhật có chiều dài $60$m, rộng $24$m. Người ta chia thành những thửa đất hình vuông bằng nhau, để mỗi thửa đất đó có diện tích lớn nhất thì độ dài cạnh mỗi thửa đất đó là bao nhiêu?

  • A.

    $8\,m$

  • B.

    $24\,m$

  • C.

    $12\,m$

  • D.

    $6\,m$

Đáp án : C

Phương pháp giải :

+ Gọi cạnh mỗi thửa đất hình vuông chia được là $x$$\left( m \right)$

+ Diện tích của thửa ruộng lớn nhất khi $x$ lớn nhất.

+ Đưa về bài toán tìm ƯCLN:  \(x = \) ƯCLN\(\left( {60;24} \right)\)

Lời giải chi tiết :

Gọi cạnh mỗi thửa đất hình vuông chia được là $x$$\left( m \right)$ Để diện tích các thửa đất đó là lớn nhất thì $x$ phải lớn nhất Vì các thửa đất đó được chia ra từ đám đất hình chữ nhật ban đầu có chiều dài $60$m và $24$m Nên $x$ phải là ước của $60$ và $24$ Hay $x \in $ƯC$\left( {60;24} \right)$ Vì $x$ là lớn nhất nên $x = $  ƯCLN$(60;24)$ Ta có: $60 = {2^2}.3.5$; $24 = {2^3}.3$ $ \Rightarrow x = $ ƯCLN$\left( {60;24} \right) = {2^2}.3 = 12.$ Vậy mỗi thửa đất hình vuông đó có độ dài cạnh lớn nhất là $12m.$

Câu 12 :

Hoa có $48$ viên bi đỏ, $30$ viên bi xanh và $60$ viên bi vàng. Hoa muốn chia đều số bi vào các túi, sao cho mỗi túi có đủ $3$ loại bi. Hỏi Hoa có thể chia vào nhiều nhất bao nhiêu túi mà mỗi túi có số bi mỗi màu bằng nhau.

  • A.

    $6$

  • B.

    $8$

  • C.

    $4$

  • D.

    $12$

Đáp án : A

Phương pháp giải :

Gọi số túi chia được là $x$ (túi) Vì số bi mỗi màu ở mỗi túi bằng nhau nên $48 \vdots x;$ $30 \vdots x$ và $60 \vdots x$ Số túi nhiều nhất mà Hoa chia được chính là ƯCLN$\left( {48;30;60} \right)$

Lời giải chi tiết :

Ta có: Gọi số túi mà Hoa chia được là $x$  (túi) Vì số bi mỗi màu ở mỗi túi cũng bằng nhau nên $48 \vdots x$ ; $30 \vdots x$ và $60 \vdots x$ $ \Rightarrow x \in $ ƯC$\left( {48;30;60} \right)$ Vì $x$  là lớn nhất nên $x = $ƯCLN$\left( {48;30;60} \right)$ Ta có: $48 = {2^4}.3$; $30 = 2.3.5$ ; $60 = {2^2}.3.5$ $ \Rightarrow x = $ƯCLN$\left( {48;30;60} \right) = 2.3 = 6$. Vậy Hoa chia được nhiều nhất là $6$ túi mà mỗi túi có số bi mỗi màu bằng nhau.

Câu 13 :

Chọn câu đúng.

  • A.

    ƯCLN$\left( {44;56} \right) = $ ƯCLN\(\left( {48;72} \right)\)

  • B.

    ƯCLN$\left( {44;56} \right) < $ ƯCLN\(\left( {48;72} \right)\)

  • C.

    ƯCLN$\left( {44;56} \right) > $ ƯCLN\(\left( {48;72} \right)\)

  • D.

    ƯCLN$\left( {44;56} \right) = 1; $ ƯCLN\(\left( {48;72} \right) = 3\)

Đáp án : B

Phương pháp giải :

+ Tìm ƯCLN\(\left( {44;56} \right)\) và ƯCLN\(\left( {48;72} \right)\) rồi so sánh hai số thu được.

+ Muốn tìm ƯCLN của của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau :

Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.

Bước 2 : Chọn ra các thừa số nguyên tố chung.

Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.

Lời giải chi tiết :

Ta có \(44 = {2^2}.11;\,56 = {2^3}.7\) nên ƯCLN\(\left( {44;56} \right) = {2^2} = 4.\)

Lại có \(48 = {2^4}.3;\,72 = {2^3}{.3^2}\) nên ƯCLN\(\left( {48;72} \right) = {2^3}.3 = 24.\)

Nên ƯCLN$\left( {44;56} \right) < $ ƯCLN\(\left( {48;72} \right)\)

Câu 14 :

Tìm $x$  lớn nhất biết $x + 160$ và $x + 300$ đều là bội của $x?$

  • A.

    $18$

  • B.

    $20$

  • C.

    $10$

  • D.

    $4$

Đáp án : B

Phương pháp giải :

Vì $x + 160$ và $x + 300$ là bội của $x$  nên $x \in $ ƯC$\left( {x + 160;x + 300} \right)$ Vì $x \vdots x$ và $x$  lớn nhất $ \Rightarrow x = $ ƯCLN$\left( {160;300} \right)$ Bài toán quy về bài toán tìm ước chung lớn nhất

Lời giải chi tiết :

Ta có: Vì $x + 160$ và $x + 300$ đều là bội của $x$  nên $\left( {x + 160} \right) \vdots x$ và $\left( {x + 300} \right) \vdots x$ Vì $x \vdots x \Rightarrow 160 \vdots x$ và $300 \vdots x$ $ \Rightarrow x \in $ ƯC$\left( {160;300} \right)$ Vì $x$ lớn nhất $ \Rightarrow x = $ ƯCLN$\left( {160;300} \right)$ $160 = {2^5}.5$ và $300 = {2^2}{.3.5^2}$ $ \Rightarrow x = $ ƯCLN$\left( {160;300} \right)$$ = {2^2}.5 = 20$

Câu 15 :

Một lớp học có $18$ nam và $24$ nữ được chia đều vào các nhóm sao cho số nam trong các nhóm bằng nhau và số nữ trong các nhóm bằng nhau. Hỏi chia được nhiều nhất bao nhiêu nhóm?

  • A.

    $24$

  • B.

    $18$

  • C.

    $12$

  • D.

    $6$

Đáp án : D

Phương pháp giải :

Vì số nam ở mỗi nhóm bằng nhau nên số nhóm là ước của 18 Số nữ ở mỗi nhóm bằng nhau nên số nhóm là ước của 24 Số nhóm nhiều nhất bằng ƯCLN(18; 24)

Lời giải chi tiết :

Ta có: Gọi số nhóm chia được là $x$ (nhóm) Vì có $18$ nam mà số nam ở mỗi nhóm bằng nhau nên $18 \vdots x$ Vì có $24$  nữ mà số nữ ở mỗi nhóm bằng nhau nên $24 \vdots x$ $ \Rightarrow x \in $ƯC$\left( {18;24} \right)$ Vì $x$  là lớn nhất nên $x = $ ƯCLN$\left( {18;24} \right)$ Ta có: $18 = {2.3^2}$ ; $24 = {2^3}.3$ $ \Rightarrow x = $ ƯCLN$\left( {18;24} \right) = 2.3 = 6$ Vậy chia được nhiều nhất là $6$  nhóm .

Câu 16 :

Lớp 6A có $40$ học sinh, lớp 6B có \(48\) học sinh, lớp 6C có \(32\) học sinh. Ba lớp cùng xếp thành hàng như nhau và không lớp nào lẻ hàng. Tính số hàng dọc nhiều nhất mỗi lớp có thể xếp được?

  • A.

    $4$

  • B.

    $12$

  • C.

    $8$

  • D.

    $6$

Đáp án : C

Phương pháp giải :

Số hàng dọc nhiều nhất mỗi lớp có thể xếp là ước chung lớn nhất của \(40;48\) và \(32.\)

Đưa về bài toán tìm ƯCLN\(\left( {40;48;32} \right)\) bằng các bước

Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.

Bước 2 : Chọn ra các thừa số nguyên tố chung.

Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.

Lời giải chi tiết :

Số hàng dọc nhiều nhất có thể xếp được là ước chung lớn nhất của \(40;48\) và \(32.\)

Ta có \(40 = {2^3}.5;\) \(48 = {2^4}.3;\,32 = {2^5}.\)

ƯCLN\(\left( {40;48;32} \right) = {2^3} = 8\)

Vậy số hàng dọc nhiều nhất mỗi lớp xếp được là \(8\) hàng.


Cùng chủ đề:

Trắc nghiệm toán 6 các dạng toán bài 6 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 7 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 8 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 9 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 10 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 12 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 13 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 7 bài 3 chương 6 chân trời sáng tạo có đáp án