Trắc nghiệm toán 6 các dạng toán bài 13 chương 1 chân trời sáng tạo có đáp án — Không quảng cáo

Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo có đáp án Bài tập trắc nghiệm Chương 1: Số tự nhiên


Trắc nghiệm Các dạng toán về bội chung, bội chung nhỏ nhất Toán 6 Chân trời sáng tạo

Đề bài

Câu 1 :

Có bao nhiêu số có ba chữ số là bội chung của a và b, biết rằng BCNN(a,b)=300.

  • A.

    1

  • B.

    2

  • C.

    3

  • D.

    300

Câu 2 :

Tìm bội chung nhỏ nhất của: 7 và 13

  • A.

    182

  • B.

    91

  • C.

    13

  • D.

    1

Câu 3 :

54 và 108 có bội chung nhỏ nhất là

  • A.

    54

  • B.

    1

  • C.

    108

  • D.

    216

Câu 4 :

Thực hiện các phép tính sau:\(\dfrac{3}{8} + \dfrac{5}{{24}}\). Với kết quả là phân số tối giản.

  • A.

    \(\dfrac{{14}}{{24}}\)

  • B.

    \(\dfrac{7}{{12}}\)

  • C.

    \(\dfrac{{112}}{{192}}\)

  • D.

    \(\dfrac{{12}}{7}\)

Câu 5 :

Cho tập hợp $X$ là ước của $35$ và lớn hơn $5$. Cho tập $Y$ là bội của $8$ và nhỏ hơn $50$.

Gọi $M$ là giao của $2$  tập hợp $X$ và $Y$, tập hợp $M$ có bao nhiêu phần tử?

  • A.

    $2$

  • B.

    $1$

  • C.

    $0$

  • D.

    $3$

Câu 6 :

Có bao nhiêu số tự nhiên \(x\) khác \(0\) thỏa mãn $x \in BC(12 ; 15 ; 20) $ và $x$  $ \le $ $100$

  • A.

    $4$

  • B.

    $3$

  • C.

    $2$

  • D.

    $1$

Câu 7 :

Tìm số tự nhiên \(x\) nhỏ nhất  biết \(x \, \vdots \, 45;\,x \, \vdots \, 110\) và \(x \, \vdots \,75.\)

  • A.

    $1650$

  • B.

    $3750$

  • C.

    $4950$

  • D.

    $3300$

Câu 8 :

Tìm một số tự nhiên biết tích của ước số lớn nhất với bội số nhỏ nhất khác $0$ của nó là $256 .$

  • A.

    $16$

  • B.

    $18$

  • C.

    $24$

  • D.

    $32$

Câu 9 :

Một trường tổ chức cho học sinh đi tham quan bằng ôtô. Nếu xếp \(35\) hay \(40\) học sinh lên một ô tô thì đều thấy thiếu mất \(5\) ghế ngồi. Tính số học sinh đi tam quan biết số lượng học sinh đó trong khoảng từ \(800\) đến \(900\) em.

  • A.

    $845$

  • B.

    $840$

  • C.

    $860$

  • D.

    $900$

Câu 10 :

Chị Hòa có một số bông sen. Nếu chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông

thì đều vừa hết. Hỏi chị Hòa có bao nhiêu bông sen? Biết rằng chị Hòa có khoảng từ

200 đến 300 bông.

  • A.

    210

  • B.

    220

  • C.

    230

  • D.

    240

Câu 11 :

Lịch xuất bến của một số xe buýt tại bến xe Mỹ Đình (Hà Nội) được ghi ở bảng bên. Giả sử các xe buýt xuất bến cùng lúc vào 10 giờ 35 phút. Hỏi vào sau bao lâu thì cả 3 xe xuất bến cùng một lúc lần nữa (kể từ lần đầu tiên)?

  • A.

    90 phút

  • B.

    45 phút

  • C.

    180 phút

  • D.

    30 phút

Câu 12 :

Tìm số tự nhiên n lớn nhất có $3$ chữ số sao cho $n$  chia $8$  dư $7,$ chia $31$  dư $28.$

  • A.

    $927$

  • B.

    $183$

  • C.

    $431$

  • D.

    $729$

Câu 13 :

Cho \(a;b\) có \(BCNN\left( {a;b} \right) = 630;\,\)ƯCLN\(\left( {a;b} \right) = 18.\) Có bao nhiêu cặp số \(a;b\) thỏa mãn?

  • A.

    $6$

  • B.

    $5$

  • C.

    $2$

  • D.

    $3$

Câu 14 :

Tìm hai số tự nhiên $a,b\left( {a < b} \right).$ Biết $a + b = 20,BCNN\left( {a,b} \right) = 15.$

  • A.

    $a = 15;b = 25.$

  • B.

    $a = 15;b = 5.$

  • C.

    $a = 15;b = 20.$

  • D.

    $a = 5;b = 15.$

Câu 15 :

Một số tự nhiên \(a\) khi chia cho \(7\) dư \(4;\) chia cho \(9\) dư \(6.\) Tìm số dư khi chia \(a\) cho \(63.\)

  • A.

    $0$

  • B.

    $36$

  • C.

    $3$

  • D.

    $60$

Lời giải và đáp án

Câu 1 :

Có bao nhiêu số có ba chữ số là bội chung của a và b, biết rằng BCNN(a,b)=300.

  • A.

    1

  • B.

    2

  • C.

    3

  • D.

    300

Đáp án : C

Phương pháp giải :

- Bội chung của hai số a và b là bội của BCNN(a,b)

- Lấy BCNN(a,b) nhân với các số 1,2,3.

Lời giải chi tiết :

BCNN(a,b) = 300

BC(a,b) là bội của 300.

=> Tất cả các số có 3 chữ số là bội chung của a và b là: 300, 600, 900

Vậy có tất cả 3 số có ba chữ số là bội của a và b.

Câu 2 :

Tìm bội chung nhỏ nhất của: 7 và 13

  • A.

    182

  • B.

    91

  • C.

    13

  • D.

    1

Đáp án : B

Phương pháp giải :

- Bội chung nhỏ nhất của hai số nguyên tố cùng nhau là tích của hai số đó.

- Hai số a và b được gọi là hai số nguyên tố cùng nhau nếu ƯCLN(a,b)=1

Lời giải chi tiết :

Vì 7 và 13 đều là hai số nguyên tố nên ƯCLN(7,13)=1

Hay 7 và 13 là hai số nguyên tố cùng nhau.

=> BCNN(7,13) = 7 . 13 = 91.

Câu 3 :

54 và 108 có bội chung nhỏ nhất là

  • A.

    54

  • B.

    1

  • C.

    108

  • D.

    216

Đáp án : C

Phương pháp giải :

- Cách tìm BCNN:

+ Phân tích các số ra thừa số nguyên tố.

+ Chọn ra các thừa số nguyên tố chung và riêng.

+ Chọn lũy thừa với số mũ lớn nhất.

+ Lấy tích của các lũy thừa đã chọn.

Lời giải chi tiết :

$54={{2.3}^{3}}$

$108={{2}^{2}}{{.3}^{3}}$

Các thừa số chung của 54 và 108 là 2 và 3.

Số mũ lớn nhất của 2 là 2

Số mũ lớn nhất của 3 là 3.

\(BCNN(54,108)={{2}^{2}}{{.3}^{3}}=108\)

Câu 4 :

Thực hiện các phép tính sau:\(\dfrac{3}{8} + \dfrac{5}{{24}}\). Với kết quả là phân số tối giản.

  • A.

    \(\dfrac{{14}}{{24}}\)

  • B.

    \(\dfrac{7}{{12}}\)

  • C.

    \(\dfrac{{112}}{{192}}\)

  • D.

    \(\dfrac{{12}}{7}\)

Đáp án : B

Phương pháp giải :

- Để quy đồng mẫu hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\), ta phải tìm mẫu chung của hai phân số đó. Thông thường ta nên chọn mẫu chung là bội chung nhỏ nhất của hai mẫu.

- Để cộng, trừ các phân số khác mẫu ta đi quy đồng mẫu số các phân số rồi thực hiện cộng(trừ) tử số và giữ nguyên mẫu.

Lời giải chi tiết :

Ta có BCNN(8; 24) = 24 nên:

\(\dfrac{3}{8} + \dfrac{5}{{24}} = \dfrac{{3.3}}{{8.3}} + \dfrac{5}{{24}} = \dfrac{9}{{24}} + \dfrac{5}{{24}} = \dfrac{{14}}{{24}} = \dfrac{7}{{12}}\)

Câu 5 :

Cho tập hợp $X$ là ước của $35$ và lớn hơn $5$. Cho tập $Y$ là bội của $8$ và nhỏ hơn $50$.

Gọi $M$ là giao của $2$  tập hợp $X$ và $Y$, tập hợp $M$ có bao nhiêu phần tử?

  • A.

    $2$

  • B.

    $1$

  • C.

    $0$

  • D.

    $3$

Đáp án : C

Phương pháp giải :

- Áp dụng kiến thức ước (bội) của $1$ số, liệt kê tập hợp các ước (bội) số đó.

- So sánh với yêu cầu của đề bài, các ước (bội) lớn hơn (hay nhỏ hơn), để tìm ra tập hợp cuối cùng.

- Dựa vào kiến thức tập hợp để tìm ra tập hợp giao của $2$ tập hợp vừa tìm được.

Lời giải chi tiết :

Ư$(35) = \{ 1,5,7,35\} ;$Ư$(35) > 5 \Rightarrow X = \{ 7,35\} $

$B(8) = \{ 0,8,16,24,32,40,48,56,...\} $

$B(8) < 50 \Rightarrow Y = \{ 0,8,16,24,32,40,48\} $

Vì:

$X = \{ 7,35\} $

$Y = \{ 0,8,16,24,32,40,48\} $

$ \Rightarrow M = X \cap Y = \emptyset $  nên tập M không có phần tử nào.

Câu 6 :

Có bao nhiêu số tự nhiên \(x\) khác \(0\) thỏa mãn $x \in BC(12 ; 15 ; 20) $ và $x$  $ \le $ $100$

  • A.

    $4$

  • B.

    $3$

  • C.

    $2$

  • D.

    $1$

Đáp án : D

Phương pháp giải :

+ Tìm các bội số nhỏ hơn \(100\) của \(12;15;20.\)

+ Tìm các số chung cho cả ba số  \(12;15;20\) trong bội số tìm được.

Lời giải chi tiết :

Ta có \(B\left( {12} \right) = \left\{ {0;12;24;36;48;60;72;84;96;...} \right\}\)

\(B\left( {15} \right) = \left\{ {0;15;30;45;60;75;90;105;...} \right\}\)

\(B\left( {20} \right) = \left\{ {0;20;40;60;80;100;...} \right\}\)

Nên \(BC\left( {12;15;20} \right) = \left\{ {0;60;120;...} \right\}\) mà \(x \le 100\) và \(x \ne 0\) nên \(x = 60.\)

Có một số tự nhiên thỏa mãn đề bài.

Câu 7 :

Tìm số tự nhiên \(x\) nhỏ nhất  biết \(x \, \vdots \, 45;\,x \, \vdots \, 110\) và \(x \, \vdots \,75.\)

  • A.

    $1650$

  • B.

    $3750$

  • C.

    $4950$

  • D.

    $3300$

Đáp án : C

Phương pháp giải :

+ Từ đề bài suy ra \(x \in \)BC\(\left( {105;175;385} \right)\) mà \(x\) nhỏ nhất nên \(x = \) BCNN\(\left( {45;75;110} \right)\).

+ Tìm bội chung nhỏ nhất theo các bước

Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện theo ba bước sau :

Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.

Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng.

Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm.

Lời giải chi tiết :

Vì \(x \, \vdots \, 45;\,x \, \vdots \, 110\) và \(x \, \vdots \, 75\) nên \(x \, \in BC\left( {45;75;110} \right)\) mà \(x\) nhỏ nhất nên  \(x = BCNN\left( {45;75;110} \right)\)

Ta có \(45 = {3^2}.5;\,75 = {3.5^2};\,110 = 2.5.11\)

Nên \(BCNN\left( {45;75;110} \right) = {2.3^2}{.5^2}.11\)\( = 4950.\)

Câu 8 :

Tìm một số tự nhiên biết tích của ước số lớn nhất với bội số nhỏ nhất khác $0$ của nó là $256 .$

  • A.

    $16$

  • B.

    $18$

  • C.

    $24$

  • D.

    $32$

Đáp án : A

Phương pháp giải :

Gọi số cần tìm là $a$ $( a \ne 0)$

Ta dùng kiến thức: " Bội nhỏ nhất của một số tự nhiên là chính nó, ước lớn nhất của một số tự nhiên khác $0$ cũng là chính nó" để lập luận và suy ra cách tính $a$.

Lời giải chi tiết :

Gọi số cần tìm là $a$ $( a \ne 0)$ Ước số lớn nhất của $a$  là $a$ Bội số nhỏ nhất khác $0$  của $a$  là $a$ Tích của ước số lớn nhất với bội số nhỏ nhất là: $a.a = 256 =  {16^2}$ $ \Rightarrow a = 16.$

Vậy số cần tìm là \(16.\)

Câu 9 :

Một trường tổ chức cho học sinh đi tham quan bằng ôtô. Nếu xếp \(35\) hay \(40\) học sinh lên một ô tô thì đều thấy thiếu mất \(5\) ghế ngồi. Tính số học sinh đi tam quan biết số lượng học sinh đó trong khoảng từ \(800\) đến \(900\) em.

  • A.

    $845$

  • B.

    $840$

  • C.

    $860$

  • D.

    $900$

Đáp án : A

Phương pháp giải :

+ Sử dụng kiến thức về phép chia có dư.

+ Sử dụng kiến thức về bội chung và bội chung nhỏ nhất.

+ Sử dụng cách tìm bội chung thông qua bội chung nhỏ nhất.

Lời giải chi tiết :

Gọi số học sinh đi thăm quan là \(x\,\left( {x \in {N^*};\,800 \le x \le 900} \right)\) (học sinh)

Nếu xếp \(35\) hay \(40\) học sinh lên một ô tô thì đều thấy thiếu mất \(5\) ghế ngồi nghĩa là thừa ra 5 học sinh nên ta có

\(\left( {x - 5} \right) \vdots 35;\,\left( {x - 5} \right) \vdots 40\) suy ra \(\left( {x - 5} \right) \in BC\left( {35;40} \right)\).

Ta có \(35 = 5.7;\,40 = {2^3}.5\) nên \(BCNN\left( {35;40} \right) = {2^3}.5.7 = 280.\)

Suy ra \((x-5) \in BC\left( {35;40} \right) = B\left( {280} \right) = \left\{ {280;560;840;1120;...} \right\}\) mà \(800 \le  x \le 900\) nên \(x -5= 840\) hay $x=845.$

Vậy số học sinh đi thăm quan là \(845\) học sinh.

Câu 10 :

Chị Hòa có một số bông sen. Nếu chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông

thì đều vừa hết. Hỏi chị Hòa có bao nhiêu bông sen? Biết rằng chị Hòa có khoảng từ

200 đến 300 bông.

  • A.

    210

  • B.

    220

  • C.

    230

  • D.

    240

Đáp án : A

Phương pháp giải :

Số bông sen là bội chung của 3, 5, 7 và 200 < x < 300.

Lời giải chi tiết :

- Gọi số bông sen chị Hòa có là: x (bông, \(x \in \mathbb{N}\)).

- Nếu chị bó thành các bỏ bông gồm 3 bông, 5 bông hay 7 bông thì số bông sen chị Hòa có là bội chung của 3, 5 và 7.

- Theo đề bài ta có xe BC(3, 5, 7) và 200 < x < 300

Vì 3, 5, 7 từng đôi một là số nguyên tố cùng nhau.

=> BCNN(3, 5, 7) = 105

=> BC(3, 5, 7) = B(105) = {0; 105, 210, 315;...}

=> x\( \in \) BC(3, 5, 7) ={0, 105, 210, 315,.... }.

Mà \(200 \le x \le 300\) nên x = 210.

Vậy số bông sen chị Hòa có là 210 bông.

Câu 11 :

Lịch xuất bến của một số xe buýt tại bến xe Mỹ Đình (Hà Nội) được ghi ở bảng bên. Giả sử các xe buýt xuất bến cùng lúc vào 10 giờ 35 phút. Hỏi vào sau bao lâu thì cả 3 xe xuất bến cùng một lúc lần nữa (kể từ lần đầu tiên)?

  • A.

    90 phút

  • B.

    45 phút

  • C.

    180 phút

  • D.

    30 phút

Đáp án : A

Phương pháp giải :

- Tính xem cứ bao nhiêu phút thì các xe xuất bến cùng lúc: BCNN(15, 9, 10)

Lời giải chi tiết :

Thời gian các xe cùng xuất bến cách 10h35p các khoảng thời gian là BC(9, 10, 15)

Ta có: 9 = \({3^2}\),   10 = 2.5,    15 = 3.5.

Thừa số chung và riêng là 2, 3 và 5

Số mũ lớn nhất của 2 là 1

Số mũ lớn nhất của 3 là 2

Số mũ lớn nhất của 5 là 1

=> BCNN(9, 10, 15) = \({2.3^2}.5\) = 90

Vậy cứ 90 phút thì các xe xuất bến cùng một lúc.

Câu 12 :

Tìm số tự nhiên n lớn nhất có $3$ chữ số sao cho $n$  chia $8$  dư $7,$ chia $31$  dư $28.$

  • A.

    $927$

  • B.

    $183$

  • C.

    $431$

  • D.

    $729$

Đáp án : A

Phương pháp giải :

Bước 1: Vì $n$ chia $8$ dư $7,$ chia $31$ dư $28 $ nên: $\left( {n - 7} \right) \vdots 8$ và $\left( {n - 28} \right) \vdots 31$  $\left( {n > 28} \right)$ Bước 2 : Biến đổi tìm số tự nhiên $m$ sao cho $\left( {n + m} \right) \vdots 8$ và $\left( {n + m} \right) \vdots 31$ Khi đó $\left( {n + m} \right) \vdots BCNN\left( {8;31} \right)$ Bước 3: Tìm các giá trị của $n$ Chọn giá trị của $n$ thỏa mãn $n$  là số lớn nhất có $3$  chữ số

Lời giải chi tiết :

Vì $n$ chia $8$ dư $7$ nên $\left( {n - 7} \right) \vdots 8\,\,\,\,\left( {n > 7} \right)$ $ \Rightarrow n = 8a + 7$ với $a \in \mathbb{N}$$ \Rightarrow \left( {n + 1} \right) \vdots 8$

Vì $n$ chia $31$  dư $28$ nên $\left( {n - 28} \right) \vdots 31\left( {n > 28} \right)$ $ \Rightarrow n = 31b + 28$ $\left( {b \in \mathbb{N}} \right)$ $ \Rightarrow \left( {n + 3} \right) \vdots 31$ Vì $64 \vdots 8$ nên $\left( {n + 1 + 64} \right) \vdots 8$ hay $\left( {n + 65} \right) \vdots 8\left( 1 \right)$ Vì $62 \vdots 31$ $ \Rightarrow \left( {n + 3 + 62} \right) \vdots 31$ hay $\left( {n + 65} \right) \vdots 31$  (2) Từ (1) và (2) $ \Rightarrow \left( {n + 65} \right) \vdots $$BCNN\left( {8;31} \right)$ $ \Rightarrow \left( {n + 65} \right) \vdots 248$ $ \Rightarrow n = 248k - 65$ $\left( {k \in {\mathbb{N}^ * }} \right)$ Với $k = 1$ $ \Rightarrow n = 248.1 - 65 = 183$ Với $k = 2 \Rightarrow n = 248.2 - 65 = 431$ Với $k = 3 \Rightarrow n = 248.3 - 65 = 679$ Với $k = 4 \Rightarrow n = 248.4 - 65 = 927$ Với $k = 5 \Rightarrow n = 248.5 - 65 = 1175$ (loại) Vì $n$  là số lớn nhất có $3$  chữ số nên $n = 927.$

Câu 13 :

Cho \(a;b\) có \(BCNN\left( {a;b} \right) = 630;\,\)ƯCLN\(\left( {a;b} \right) = 18.\) Có bao nhiêu cặp số \(a;b\) thỏa mãn?

  • A.

    $6$

  • B.

    $5$

  • C.

    $2$

  • D.

    $3$

Đáp án : D

Phương pháp giải :

+ Vì ƯCLN\(\left( {a;b} \right) = 18\) nên đặt \(a = 18x;\,b = 18y\) với \(x;y \in N;\,\)\(ƯCLN\left( {x;y} \right) = 1;\,y \ne 1.\)

+ Sử dụng ƯCLN\(\left( {a;b} \right).BCNN\left( {a;b} \right) = a.b\) để tìm ra các giá trị \(x;y\) thỏa mãn từ đó suy ra các cặp số \(a;b\) cần tìm.

Lời giải chi tiết :

Vì ƯCLN\(\left( {a;b} \right) = 18\) nên đặt \(a = 18x;\,b = 18y\) với \(x;y \in N;\,\)\(ƯCLN \left( {x;y} \right) = 1;\,y \ne 1.\)

Vì  ƯCLN\(\left( {a;b} \right).BCNN\left( {a;b} \right) = a.b\)

Nên \(18.630 = 18x.18y\) \( \Rightarrow x.y = \left( {18.630} \right):\left( {18.18} \right)\) hay \(x.y = 35\) mà \(y \ne 1\)

Do đó ta có:

+) Nếu \(x = 1\) thì \(y = 35\) khi đó \(a = 18.1 = 18;b = 35.18 = 630\)

+) Nếu \(x = 5\) thì \(y = 7\) khi đó \(a = 18.5 = 90;b = 7.18 = 126\)

+) Nếu \(x = 7\) thì \(y = 5\) khi đó \(a = 18.7 = 126;b = 5.18 = 90\)

Vậy có ba cặp số \(a;b\) thỏa mãn.

Câu 14 :

Tìm hai số tự nhiên $a,b\left( {a < b} \right).$ Biết $a + b = 20,BCNN\left( {a,b} \right) = 15.$

  • A.

    $a = 15;b = 25.$

  • B.

    $a = 15;b = 5.$

  • C.

    $a = 15;b = 20.$

  • D.

    $a = 5;b = 15.$

Đáp án : D

Phương pháp giải :

Gọi ƯCLN$\left( {a,b} \right) = d$ Tìm $d \in $ ƯC$\left( {15;20} \right)$ sau đó thay $d$ vào công thức $a.b = $ƯCLN$\left( {a,b} \right).BCNN\left( {a,b} \right),$ kết hợp điều kiện $a + b = 20$ để tìm $a$  và $b$.

Lời giải chi tiết :

Gọi ƯCLN$\left( {a,b} \right) = d$ $ \Rightarrow a = d.m,b = d.n;\left( {m,n} \right) = 1$ $ \Rightarrow a + b = d\left( {m + n} \right)$ $ \Rightarrow d \in $ Ư$\left( {a + b} \right)$  hay $d \in $Ư$\left( {20} \right)$ Vì $BCNN\left( {a,b} \right) = 15$ \( \Rightarrow 15 \vdots d\) hay $d \in $Ư$\left( {15} \right)$ $ \Rightarrow d \in $  ƯC$\left( {15;20} \right)$ Mà ƯCLN$\left( {15;20} \right) = 5$ nên $d = 1$ hoặc $d = 5$ +) Nếu $d = 1 \Rightarrow a.b = 1.15 = 15 = 3.5$ Khi đó $a + b = 3 + 5 = 8$ (loại) Hoặc $a + b = 1 + 15 = 16$ (loại) +) Nếu $d = 5$ thì $a.b = 5.15 = 75 = 1.75$ Khi đó $a + b = 15 + 5 = 20$ (thỏa mãn) Hoặc $a + b = 1 + 75 = 76$ (loại) Vậy hai số cần tìm là $a = 5;b = 15.$

Câu 15 :

Một số tự nhiên \(a\) khi chia cho \(7\) dư \(4;\) chia cho \(9\) dư \(6.\) Tìm số dư khi chia \(a\) cho \(63.\)

  • A.

    $0$

  • B.

    $36$

  • C.

    $3$

  • D.

    $60$

Đáp án : D

Phương pháp giải :

+ Sử dụng kiến thức về phép chia có dư.

+ Sử dụng kiến thức về bội chung và bội chung nhỏ nhất.

Lời giải chi tiết :

Vì \(a\) chia cho \(7\) dư \(4 \Rightarrow \left( {a + 3} \right) \vdots 7\)

\(a\) chia cho \(9\) dư \(6\) \( \Rightarrow \left( {a + 3} \right) \vdots 9\)

Do đó \(\left( {a + 3} \right) \in BC\left( {7;9} \right)\) mà \(BCNN\left( {7;9} \right) = 63.\)

Do đó \(\left( {a + 3} \right) \vdots 63 \Rightarrow a\) chia cho \(63\) dư \(60.\)


Cùng chủ đề:

Trắc nghiệm toán 6 các dạng toán bài 7 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 8 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 9 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 10 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 12 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 6 các dạng toán bài 13 chương 1 chân trời sáng tạo có đáp án
Trắc nghiệm toán 7 bài 3 chương 6 chân trời sáng tạo có đáp án