Bài 11 trang 76 SGK Toán 9 tập 1 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 2. Tỉ số lượng giác của góc nhọn


Bài 11 trang 76 SGK Toán 9 tập 1

Tính các tỷ số lượng giác của góc B, từ đó suy ra các tỷ số lượng giác của góc A.

Đề bài

Cho tam giác \(ABC\) vuông tại \(C\), trong đó \(AC=0,9m\), \(BC=1,2m\). Tính các tỷ số lượng giác của góc \(B\), từ đó suy ra các tỷ số lượng giác của góc \(A\).

Phương pháp giải - Xem chi tiết

+) Dùng định lí Pytago để tính độ dài cạnh huyền.

+) Dựa vào định nghĩa tỉ số lượng giác để tính các tỉ số lượng giác của góc \(B\).

\(\sin \alpha =\dfrac{cạnh\ đối}{cạnh\ huyền};\)         \(\cos \alpha = \dfrac{cạnh\ kề}{cạnh\ huyền}\);

\(\tan \alpha = \dfrac{cạnh\ đối}{cạnh\ kề};\)             \(\cot \alpha =\dfrac{cạnh\ kề}{cạnh\ đối}.\)

+) Dựa vào định lí về tỉ số lượng giác của hai góc phụ nhau: " Nếu hai góc phụ nhau thì sin góc này bằng cosin góc kia, tan góc này bằng cotang góc kia" để từ các tỉ số lượng giác của góc \(B\) tính tỉ số lượng giác của góc \(A\).

Lời giải chi tiết

Xét \(\Delta{ABC}\) vuông tại \(C\), áp dụng định lí Pytago, ta có:

\(AB^2=CB^2+AC^2\)

\(\Leftrightarrow AB^2=0,9^2+1,2^2\)

\(\Leftrightarrow AB^2=0,81+1,44=2,25\)

\(\Leftrightarrow AB=\sqrt{2,25}=1,5m\)

Vì \(\Delta{ABC}\) vuông tại \(C\) nên góc \(B\) và \(A\) là hai góc phụ nhau. Do vậy, ta có:

\(\sin A=\cos B=\dfrac{BC}{AB}=\dfrac{1,2}{1,5}=\dfrac{4}{5}\)

\(\cos A=\sin B=\dfrac{AC}{AB} =\dfrac{0,9}{1,5}=\dfrac{3}{5}\)

\(\tan A=\cot B=\dfrac{BC}{AC}=\dfrac{1,2}{0,9}=\dfrac{4}{3}\)

\(\cot A=\tan B=\dfrac{AC}{BC}=\dfrac{0,9}{1,2}=\dfrac{3}{4}\)

Nhận xét: Với hai góc phụ nhau, ta có sin góc này bằng cosin góc kia, tan góc này bằng cotan góc kia.


Cùng chủ đề:

Bài 11 trang 11 SGK Toán 9 tập 1
Bài 11 trang 12 SGK Toán 9 tập 2
Bài 11 trang 42 SGK Toán 9 tập 2
Bài 11 trang 48 SGK Toán 9 tập 1
Bài 11 trang 72 SGK Toán 9 tập 2
Bài 11 trang 76 SGK Toán 9 tập 1
Bài 11 trang 104 SGK Toán 9 tập 1
Bài 11 trang 112 SGK Toán 9 tập 2
Bài 11 trang 133 SGK Toán 9 tập 2
Bài 11 trang 135 SGK Toán 9 tập 2
Bài 12 trang 11 SGK Toán 9 tập 1