Bài 2 trang 56 SGK Toán 11 tập 1 - Cánh diều
Chứng minh mỗi dãy số (left( {{u_n}} right)) với số hạng tổng quát như sau là cấp số nhân:
Đề bài
Chứng minh mỗi dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát như sau là cấp số nhân:
a) \({u_n} = - \frac{3}{4}{.2^n}\)
b) \({u_n} = \frac{5}{{{3^n}}}\)
c) \({u_n} = {\left( { - 0,75} \right)^n}\)
Phương pháp giải - Xem chi tiết
Dựa vào định nghĩa để chứng minh
Lời giải chi tiết
a) Ta có:
\(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{ - \frac{3}{4}{{.2}^n}}}{{ - \frac{3}{4}{{.2}^{n - 1}}}} = \frac{{{2^n}}}{{{2^{n - 1}}}} = {2^1} = 2\)
Dãy số là cấp số nhân
b) Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{\frac{5}{{{3^n}}}}}{{\frac{5}{{{3^{n - 1}}}}}} = {3^{ - 1}} = \frac{1}{3}\)
Dãy số là cấp số nhân
c) Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{{\left( { - 0,75} \right)}^n}}}{{{{\left( { - 0,75} \right)}^{n - 1}}}} = {\left( { - 0,75} \right)^{ - 1}} = - \frac{4}{3}\)
Dãy số là cấp số nhân