Bài 5. 18 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 11, giải toán lớp 11 kết nối tri thức với cuộc sống Bài tập cuối chương V Toán 11 kết nối tri thức


Bài 5.18 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức

Cho dãy số (left( {{u_n}} right)) với ({u_n} = sqrt {{n^2} + 1} - sqrt n ). Mệnh đề đúng là A. (mathop {lim }limits_{n to + infty } {u_n} = - infty ) B. (mathop {lim }limits_{n to + infty } {u_n} = 1) C. (mathop {lim }limits_{n to + infty } {u_n} = + infty ) D. (mathop {lim }limits_{n to + infty } {u_n} = 0)

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \sqrt {{n^2} + 1}  - \sqrt n \). Mệnh đề đúng là

A. \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} =  - \infty \)

B. \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = 1\)

C. \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} =  + \infty \)

D. \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = 0\)

Phương pháp giải - Xem chi tiết

Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( + \infty \) khi \(n \to  + \infty \) nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} =  + \infty \)

Lời giải chi tiết

Đáp án: C


Cùng chủ đề:

Bài 5. 13 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 14 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 15 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 16 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 17 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 18 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 19 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 20 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 21 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 22 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 23 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức