Bài 5. 16 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 11, giải toán lớp 11 kết nối tri thức với cuộc sống Bài 17. Hàm số liên tục Toán 11 kết nối tri thức


Bài 5.16 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức

Tìm giá trị của tham số m đề hàm số (fleft( x right) = left{ {begin{array}{*{20}{c}}{sin x;,x ge 0}\{ - x + m;;,;x < 0}end{array}} right.) liên tục trên (mathbb{R})

Đề bài

Tìm giá trị của tham số m đề hàm số

\(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\sin x\;,x \ge 0}\\{ - x + m\;\;,\;x < 0}\end{array}} \right.\)    liên tục trên \(\mathbb{R}\)

Phương pháp giải - Xem chi tiết

Hàm số \(f\left( x \right)\) liên tục trên khoảng \(\left( {a,b} \right)\) nếu nó liên tục tại mọi điểm thuộc khoảng này

Hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a,b} \right]\) nếu nó liên tục trên khoảng \(\left( {a,b} \right)\) và

\(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right),\;\) \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\)

Lời giải chi tiết

Tập xác định: \(D = \mathbb{R}\)

Ta có:

\(\mathop {\lim }\limits_{x \to {0^ + }} \sin x = 0\)

Để hàm số liên tục trên \(\mathbb{R}\) thì \(\mathop {\lim }\limits_{x \to {0^ + }} \sin x = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x + m} \right) = 0 \Rightarrow m = 0\).


Cùng chủ đề:

Bài 5. 11 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 12 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 13 trang 118 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 14 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 15 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 16 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 17 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 18 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 19 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 20 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức
Bài 5. 21 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức