Bài 65 trang 34 SGK Toán 9 tập 1 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 8. Rút gọn biểu thức chứa căn bậc hai


Bài 65 trang 34 SGK Toán 9 tập 1

Rút gọn rồi so sánh giá trị của M với 1, biết:

Đề bài

Rút gọn rồi so sánh giá trị của \(M\) với \(1\), biết:

\(M={\left(\dfrac{1}{a -\sqrt a} +\dfrac{1}{\sqrt a -1}\right)} : \dfrac{\sqrt a +1}{a -2\sqrt a+1}\)   với \(a > 0\) và \( a \ne 1\).

Phương pháp giải - Xem chi tiết

+ Sử dụng hằng đẳng thức số \(2\): \(a^2-2ab+b^2=(a-b)^2\).

+ Sử dụng phép biến đổi đặt nhân tử chung.

Lời giải chi tiết

Ta có:

\(M={\left(\dfrac{1}{a -\sqrt a} +\dfrac{1}{\sqrt a -1}\right)} : \dfrac{\sqrt a +1}{a -2\sqrt a+1}\)

\(={\left(\dfrac{1}{\sqrt a .\sqrt a -\sqrt a .1}+\dfrac{1}{\sqrt a -1} \right)} : \dfrac{\sqrt a +1}{(\sqrt a)^2 -2\sqrt a+1}\)

\(={\left(\dfrac{1}{\sqrt a(\sqrt a -1)}+\dfrac{1}{\sqrt a -1} \right)} : \dfrac{\sqrt a +1}{(\sqrt a -1)^2}\)

\(={\left(\dfrac{1}{\sqrt a(\sqrt a -1)}+\dfrac{\sqrt a}{\sqrt a(\sqrt a -1)} \right)} : \dfrac{\sqrt a +1}{(\sqrt a -1)^2}\)

\(=\dfrac{1+\sqrt a}{\sqrt a(\sqrt a -1)}  : \dfrac{\sqrt a +1}{(\sqrt a -1)^2}\)

\(=\dfrac{1+\sqrt a}{\sqrt a(\sqrt a -1)}  . \dfrac{(\sqrt a -1)^2}{\sqrt a +1}\)

\(=\dfrac{1}{\sqrt a}  . \dfrac{\sqrt a -1}{1}=\dfrac{\sqrt a -1}{\sqrt a}\).

\(=\dfrac{\sqrt a}{\sqrt a}-\dfrac{1}{\sqrt a} =1 -\dfrac{1}{\sqrt a}\)

Vì \(a > 0 \Rightarrow \sqrt a > 0 \Rightarrow \dfrac{1}{\sqrt a} > 0  \Rightarrow 1 -\dfrac{1}{\sqrt a} < 1\).

Vậy \(M < 1\).


Cùng chủ đề:

Bài 63 trang 64 SGK Toán 9 tập 2
Bài 63 trang 92 SGK Toán 9 tập 2
Bài 64 trang 33 SGK Toán 9 tập 1
Bài 64 trang 64 SGK Toán 9 tập 2
Bài 64 trang 92 SGK Toán 9 tập 2
Bài 65 trang 34 SGK Toán 9 tập 1
Bài 65 trang 64 SGK Toán 9 tập 2
Bài 65 trang 94 SGK Toán 9 tập 2
Bài 66 trang 34 SGK Toán 9 tập 1
Bài 66 trang 64 SGK Toán 9 tập 2
Bài 66 trang 95 SGK Toán 9 tập 2