Bài 7 trang 57 SGK Toán 11 tập 1 - Cánh diều — Không quảng cáo

Toán 11, giải toán lớp 11 cánh diều Bài tập cuối chương 2 Toán 11 Cánh diều


Bài 7 trang 57 SGK Toán 11 tập 1 - Cánh diều

Trong các dãy số (left( {{u_n}} right)) sau đây, dãy số nào là dãy số tăng?

Đề bài

Cho cấp số nhân \(\left( {{u_n}} \right)\) có \({u_1} = - 1\), công bộ \(q = - \frac{1}{{10}}\). Khi đó \(\frac{1}{{{{10}^{2017}}}}\) là số hạng thứ: A. 2 016 B. 2 017 C. 2 018 D. 2 019

Phương pháp giải - Xem chi tiết

Nếu \({u_{n + 1}}\; > {\rm{ }}{u_n}\;,\forall n \in {\mathbb{N}^*}\) \( \Rightarrow \left( {{u_n}} \right)\) là dãy số tăng.

Nếu \({u_{n + 1}}\; < {\rm{ }}{u_n}\;,\forall n \in {\mathbb{N}^*}\) \( \Rightarrow \left( {{u_n}} \right)\) là dãy số giảm.

Lời giải chi tiết

Số hạng tổng quát của cấp số nhân là: \(u_0 = (-1)(-\frac{1}{10})^{n-1}\).

Xét \(u_n = (-1).(-\frac{1}{10})^{n-1}=\frac{1}{10^{2017}}\)

⇔ \((-\frac{1}{10})^{n-1}=(-\frac{1}{10})^{2017}\)

⇔ n – 1 = 2017

⇔ n = 2018.


Cùng chủ đề:

Bài 7 trang 41 SGK Toán 11 tập 1 - Cánh diều
Bài 7 trang 47 SGK Toán 11 tập 2 - Cánh Diều
Bài 7 trang 52 SGK Toán 11 tập 1 - Cánh diều
Bài 7 trang 56 SGK Toán 11 tập 1 - Cánh diều
Bài 7 trang 56 SGK Toán 11 tập 2 - Cánh Diều
Bài 7 trang 57 SGK Toán 11 tập 1 - Cánh diều
Bài 7 trang 72 SGK Toán 11 tập 2 - Cánh Diều
Bài 7 trang 80 SGK Toán 11 tập 1 - Cánh Diều
Bài 7 trang 94 SGK Toán 11 tập 1 - Cánh diều
Bài 7 trang 100 SGK Toán 11 tập 1 - Cánh diều
Bài 7 trang 115 SGK Toán 11 tập 2 - Cánh Diều