Bài 9.13 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức
Cho hàm số (fleft( x right) = {x^2}{e^x}.) Tính (f''left( 0 right).)
Đề bài
Cho hàm số f(x)=x2ex. Tính f″
Phương pháp giải - Xem chi tiết
Giả sử hàm số y = f\left( x \right) có đạo hàm tại mỗi điểm x \in \left( {a;b} \right). Nếu hàm số y' = f'\left( x \right) lại có đạo hàm tại x thì ta gọi đạo hàm của y' là đạo hàm cấp hai của hàm số y = f\left( x \right) tại x, kí hiệu là y'' hoặc f''\left( x \right).
Lời giải chi tiết
Ta có f'\left( x \right) = 2x{e^x} + {x^2}{e^x} \Rightarrow f''\left( x \right) = 2\left( {{e^x} + x{e^x}} \right) + 2x{e^x} + {x^2}{e^x} = 2{e^x} + 4x{e^x} + {x^2}{e^x}
Vậy f''\left( 0 \right) = 2.
Cùng chủ đề:
Bài 9. 13 trang 96 SGK Toán 11 tập 2 - Kết nối tri thức