Bài tập 28 trang 123 Tài liệu dạy – học Toán 7 tập 2 — Không quảng cáo

Giải bài tập Tài liệu Dạy - Học Toán lớp 7, Phát triển tư duy đột phá trong dạy học Toán 7 Bài tập - Chủ đề 6: Các đường đồng quy của tam giác


Bài tập 28 trang 123 Tài liệu dạy – học Toán 7 tập 2

Giải bài tập Cho tam giác ABC vuông cân tại A. Lấy điểm E thuộc cạnh AC. Trên tia đối của tia AB lấy điểm D sao cho AD = AE. Chứng minh:

Đề bài

Cho tam giác ABC vuông cân tại A. Lấy điểm E thuộc cạnh AC. Trên tia đối của tia AB lấy điểm D sao cho AD = AE. Chứng minh:

a) DE vuông góc với BC.

b) BE vuông góc với DC.

Lời giải chi tiết

a) Gọi H là giao điểm của DE và BC.

Ta có: \(\widehat {ADE} + \widehat {AED} = 90^\circ\) (∆ADE vuông tại A)

\(\widehat {ADE} = \widehat {ECH}( = 45^\circ )\)

\(\widehat {AED} = \widehat {HEC}\) (hai góc đối đỉnh)

Do đó: \(\widehat {ECH} + \widehat {HEC} = 90^\circ\)

Mà \(\widehat {ECH} + \widehat {HEC} + \widehat {EHC} = 180^\circ\) (tổng ba góc trong một tam giác)

Nên \(90^\circ  + \widehat {EHC} = 180^\circ  \Rightarrow \widehat {EHC} = 90^\circ  \Rightarrow EH \bot BC \Rightarrow DE \bot BC.\)

b) ∆BDC có: DE là đường cao \((DE \bot BC),\)

CA là đường cao \((CA \bot AB,D \in BA)\) và DE cắt CA tại E (gt)

Do đó E là trực tâm của ∆BDC.

Vậy BE là đường cao của tam giác ABC. Nên \(BE \bot DC.\)


Cùng chủ đề:

Bài tập 27 trang 98 Tài liệu dạy – học Toán 7 tập 2
Bài tập 27 trang 123 Tài liệu dạy – học Toán 7 tập 2
Bài tập 28 trang 28 Tài liệu dạy – học Toán 7 tập 1
Bài tập 28 trang 78 Tài liệu dạy – học Toán 7 tập 2
Bài tập 28 trang 98 Tài liệu dạy – học Toán 7 tập 2
Bài tập 28 trang 123 Tài liệu dạy – học Toán 7 tập 2
Bài tập 29 trang 28 Tài liệu dạy – học Toán 7 tập 1
Bài tập 29 trang 78 Tài liệu dạy – học Toán 7 tập 2
Bài tập 29 trang 98 Tài liệu dạy – học Toán 7 tập 2
Bài tập 29 trang 124 Tài liệu dạy – học Toán 7 tập 2
Bài tập 30 trang 28 Tài liệu dạy – học Toán 7 tập 1