Bài tập 30 trang 79 Tài liệu dạy – học Toán 7 tập 2
Giải bài tập Cho các đa thức
Đề bài
Cho các đa thức
\(M\left( x \right) = 4x - 9{x^4} + 2{x^2}\) ;
\(N\left( x \right) = 5 + 2{x^2} - 8x + {x^4}\)
a) Hãy sắp xếp các hạng tử của mỗi đa thức theo lũy thừa tăng của biến.
b) Hãy tính M(x) + N(x) và M(x) – N(x).
Lời giải chi tiết
a) Đa thức \(M\left( x \right) = 4x - 9{x^4} + 2{x^2}\) khi xếp theo lũy thừa tăng của biến \(M\left( x \right) = 4x + 2{x^2} - 9{x^4}.\)
Đa thức \(N\left( x \right) = 5 + 2{x^2} - 8x + {x^4}\) khi xếp theo lũy thừa tăng của biến \(N\left( x \right) = 5 - 8x + 2{x^2} + {x^4}.\)
b) Cách 1:
\(\eqalign{ & M(x) + N(x) = (4x - 9{x^4} + 2{x^2}) + (5 + 2{x^2} - 8x + {x^4}) \cr & = 4x - 9{x^4} + 2{x^2} + 5 + 2{x^2} - 8x + {x^4} \cr & = (4x - 8x) + ( - 9{x^4} + {x^4}) + (2{x^2} + 2{x^2}) + 5 = - 4x - 8{x^4} + 4{x^2} + 5 = 5 - 4x + 4{x^2} - 8{x^4} \cr}\)
• Cách 2:
• Cách 1:
\(\eqalign{ & M(x) - N(x) = (4x - 9{x^4} + 2{x^2}) - (5 + 2{x^2} - 8x + {x^4}) \cr & = 4x - 9{x^4} + 2{x^2} - 5 - 2{x^2} + 8x - {x^4} \cr & = (4x + 8x) + ( - 9{x^4} - {x^4}) + (2{x^2} - 2{x^2}) - 5 = 12x - 10{x^4} - 5 = - 5 + 12x - 10{x^4} \cr}\)
• Cách 2: