Câu 15 trang 109 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 2. Dãy số


Câu 15 trang 109 SGK Đại số và Giải tích 11 Nâng cao

Cho dãy số (un) xác định bởi

Cho dãy số (u n ) xác định bởi

\({u_1} = 3\,\text{ và }\,{u_{n + 1}} = {u_n} + 5\) với mọi \(n ≥ 1\).

LG a

Hãy tính u 2 , u 4 và u 6 .

Lời giải chi tiết:

Ta có:

\(\eqalign{ & {u_2} = {u_1} + 5 = 8 \cr & {u_3} = {u_2} + 5 = 13 \cr & {u_4} = {u_3} + 5 = 18 \cr & {u_5} = {u_4} + 5 = 23 \cr & {u_6} = {u_5} + 5 = 28 \cr} \)

LG b

Chứng minh rằng \(u_n= 5n – 2\) với mọi \(n ≥ 1\).

Lời giải chi tiết:

Ta sẽ chứng minh : \(u_n= 5n – 2\) (1) với mọi \(n \in \mathbb N^*\), bằng phương pháp qui nạp.

+) Với \(n = 1\), ta có \(u_1= 3 = 5.1 – 2\)

Vậy (1) đúng khi \(n = 1\).

+) Giả sử (1) đúng với \(n = k, k\in \mathbb N^*\), tức là:

\(u_k=5k-2\)

+) Ta sẽ chứng minh (1) cũng đúng khi \(n = k + 1\)

Thật vậy, từ công thức xác định dãy số (u n ) và giả thiết qui nạp ta có :

\({u_{k + 1}} = {u_k} + 5 \)

\(= 5k - 2 + 5 = 5\left( {k + 1} \right) - 2\)

Do đó (1) đúng với mọi \(n \in \mathbb N^*\).

Cách khác:

Ta có:

\(\begin{array}{l} {u_n} = {u_{n - 1}} + 5\\ {u_{n - 1}} = {u_{n - 2}} + 5\\ ...\\ {u_3} = {u_2} + 5\\ {u_2} = {u_1} + 5\\ \Rightarrow {u_n} + {u_{n - 1}} + ... + {u_3} + {u_2}\\ = \left( {{u_{n - 1}} + 5} \right) + \left( {{u_{n - 2}} + 5} \right) + ...\\ + \left( {{u_2} + 5} \right) + \left( {{u_1} + 5} \right)\\ \Rightarrow {u_n} + {u_{n - 1}} + ... + {u_3} + {u_2}\\ = {u_{n - 1}} + {u_{n - 2}} + ... + {u_2} + {u_1}\\ + \left( {5 + 5 + ... + 5 + 5} \right)(\text{ n-1 số 5})\\ \Rightarrow {u_n} = {u_1} + 5.\left( {n - 1} \right)\\ \Rightarrow {u_n} = 3 + 5n - 5 = 5n - 2 \end{array}\)


Cùng chủ đề:

Câu 15 trang 18 SGK Hình học 11 Nâng cao
Câu 15 trang 28 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 51 SGK Hình học 11 Nâng cao
Câu 15 trang 64 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 102 SGK Hình học 11 Nâng cao
Câu 15 trang 109 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 142 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 195 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 225 SGK Đại số và Giải tích 11 Nâng cao
Câu 16 trang 19 SGK Hình học 11 Nâng cao
Câu 16 trang 28 SGK Đại số và Giải tích 11 Nâng cao