Câu 15 trang 102 SGK Hình học 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3: Đường thẳng vuông góc với mặt phẳng


Câu 15 trang 102 SGK Hình học 11 Nâng cao

Cho tứ diện ABCD. Tìm điểm O cách đều bốn đỉnh của tứ diện.

Đề bài

Cho tứ diện ABCD. Tìm điểm O cách đều bốn đỉnh của tứ diện.

Lời giải chi tiết

Gọi I là tâm đường tròn ngoại tiếp của ΔBCD

Gọi d là đường thẳng đi qua I và vuông góc với mặt phẳng (BCD)

Theo kết quả bài 14. M ϵ d ⇔ MB = MC = MD

(d gọi là trục của đường tròn ngoại tiếp tam giác BCD)

Gọi O là giao điểm của d với mặt phẳng trung trực của AB.

=> OA = OB ( vì O thuộc mặt phẳng trung trực của AB).

Và OB = OC = OD ( vì O thuộc đường thẳng d).

Suy ra :OA = OB = OC = OD hay O cách đều bốn đỉnh của tứ diện (O gọi là tâm mặt cầu ngoại tiếp tứ diện ABCD).


Cùng chủ đề:

Câu 14 trang 225 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 18 SGK Hình học 11 Nâng cao
Câu 15 trang 28 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 51 SGK Hình học 11 Nâng cao
Câu 15 trang 64 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 102 SGK Hình học 11 Nâng cao
Câu 15 trang 109 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 142 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 195 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 225 SGK Đại số và Giải tích 11 Nâng cao
Câu 16 trang 19 SGK Hình học 11 Nâng cao