Câu 42 trang 85 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 5. Các quy tắc tính xác suất


Câu 42 trang 85 SGK Đại số và Giải tích 11 Nâng cao

Gieo ba con súc sắc cân đối một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện của ba con súc sắc bằng 9.

Đề bài

Gieo ba con súc sắc cân đối một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện của ba con súc sắc bằng 9.

Lời giải chi tiết

Giả sử T là phép thử “Gieo ba con súc sắc”.

Kết quả của T là bộ ba số \((x, y, z)\), trong đó \(x, y, z\) tương ứng là kết quả của việc gieo con súc sắc thứ nhất, thứ hai, thứ ba.

Không gian mẫu T có \(6.6.6 = 216\) phần tử.

Gọi A là biến cố “Tổng số chấm trên mặt xuất hiện của ba con súc sắc là 9”.

Ta có tập hợp các kết quả thuận lợi cho A là :

Ω A = {(x;y;z)|x + y + z = 9,x, y, z N*, 1 ≤x,y,z ≤ 6}

Nhận xét:

9 = 1 + 2 + 6 = 1 + 3 + 5 = 2 + 3 + 4

= 1 + 4 + 4 = 2 + 2 + 5 = 3 + 3 + 3

Tập {1,2,6} cho ta 6 phần tử của Ω A là (1,2,6); (1,6,2); (2,1,6); (2,6,1); (6,1,2); (6,2,1).

Tương tự tập {1,3,5},{2,3,4} mỗi tập cho ta 6 phần tử của Ω A .

Tập {1,4,4} cho ta 3 kết quả của Ω A là: (1,4,4);(4,1,4);(4,4,1)

Tương tự tập {2,2,5} cho ta 3 phần tử của Ω A

Tập {3,3,3} cho ta 1 phần tử của Ω A

Vậy |Ω A | = 6 + 6 + 6 + 3 + 3 + 1 = 25

Suy ra  \(P\left( A \right) = {{25} \over {216}}\)


Cùng chủ đề:

Câu 41 trang 122 SGK Đại số và Giải tích 11 Nâng cao
Câu 41 trang 166 SGK Đại số và Giải tích 11 Nâng cao
Câu 41 trang 216 SGK Đại số và Giải tích 11 Nâng cao
Câu 42 trang 47 SGK Đại số và Giải tích 11 Nâng cao
Câu 42 trang 74 SGK Hình học 11 Nâng cao
Câu 42 trang 85 SGK Đại số và Giải tích 11 Nâng cao
Câu 42 trang 122 SGK Đại số và Giải tích 11 Nâng cao
Câu 42 trang 167 SGK Đại số và Giải tích 11 Nâng cao
Câu 42 trang 218 SGK Đại số và Giải tích 11 Nâng cao
Câu 43 trang 47 SGK Đại số và Giải tích 11 Nâng cao
Câu 43 trang 75 SGK Hình học 11 Nâng cao