Câu 41 trang 166 SGK Đại số và Giải tích 11 Nâng cao
Tìm các giới hạn sau :
Tìm các giới hạn sau :
LG a
lim
Phương pháp giải:
Nhân và chia với biểu thức \left( {\sqrt {{x^2} + 1} +x} \right)
Lời giải chi tiết:
Dạng ∞ - ∞
\eqalign{ & \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x} \right) \cr &= \mathop {\lim }\limits_{x \to + \infty } {{{x^2} + 1 - {x^2}} \over {\sqrt {{x^2} + 1} + x}} \cr & = \mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt {{x^2} + 1} + x}} = 0 \cr}
LG b
\mathop {\lim }\limits_{x \to 1} {{\sqrt {2x - {x^2}} - 1} \over {{x^2} - x}}
Phương pháp giải:
Nhân cả tử và mẫu với biểu thức \left( {\sqrt {2x - {x^2}} + 1} \right)
Lời giải chi tiết:
Dạng {0 \over 0}
\eqalign{ & \mathop {\lim }\limits_{x \to 1} {{\sqrt {2x - {x^2}} - 1} \over {{x^2} - x}} \cr &= \mathop {\lim }\limits_{x \to 1} {{2x - {x^2} - 1} \over {x\left( {x - 1} \right)\left( {\sqrt {2x - {x^2}} + 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to 1} {{ - {{\left( {x - 1} \right)}^2}} \over {x\left( {x - 1} \right)\left( {\sqrt {2x - {x^2}} + 1} \right)}} \cr &= \mathop {\lim }\limits_{x \to 1} {{1 - x} \over {x\left( {\sqrt {2x - {x^2}} + 1} \right)}} = 0 \cr}