Câu 5 trang 120 SGK Hình học 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài tập ôn tập chương III


Câu 5 trang 120 SGK Hình học 11 Nâng cao

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Tính diện tích các tam giác HAB, HBC và HCA.

Đề bài

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Tính diện tích các tam giác HAB, HBC và HCA.

Lời giải chi tiết

Vì OA, OB, OC đôi một vuông góc và H là hình chiếu của O trên mp(ABC) nên H là trực tâm tam giác ABC. Từ đó HC 1 ⊥ AB (C 1 là giao điểm của CH và AB), suy ra OC 1 ⊥ AB. Như vậy \(\widehat {O{C_1}H}\) là góc giữa mp(OAB) và mp(ABC).

Ta có: \({S_{HAB}} = {S_{OAB}}\cos \widehat {O{C_1}H}\)

Mà \(\widehat {O{C_1}H} = \widehat {HOC}\) nên \({S_{HAB}} = {S_{OAB}}\cos \widehat {HOC}.\)

Ta lại có : \(\cos \widehat {HOC} = {{OH} \over {OC}},{1 \over {O{H^2}}} = {1 \over {O{A^2}}} + {1 \over {O{B^2}}} + {1 \over {O{C^2}}}\)

Từ đó : \(\cos \widehat {HOC} = {{ab} \over {\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }}\)

Mặt khác \({S_{OAB}} = {1 \over 2}ab\)

Vậy \({S_{HAB}} = {{{a^2}{b^2}} \over {2\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }}\)

Tương tự như trên, ta có :

\(\eqalign{  & {S_{HBC}} = {{{b^2}{c^2}} \over {2\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }}  \cr  & {S_{HAC}} = {{{c^2}{a^2}} \over {2\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }} \cr} \)


Cùng chủ đề:

Câu 5 trang 62 SGK Đại số và Giải tích 11 Nâng cao
Câu 5 trang 78 SGK Hình học 11 Nâng cao
Câu 5 trang 79 SGK Hình học 11 Nâng cao
Câu 5 trang 91 SGK Hình học 11 Nâng cao
Câu 5 trang 100 SGK Đại số và Giải tích 11 Nâng cao
Câu 5 trang 120 SGK Hình học 11 Nâng cao
Câu 5 trang 122 SGK Hình học 11 Nâng cao
Câu 5 trang 125 SGK Hình học 11 Nâng cao
Câu 5 trang 134 SGK Đại số và Giải tích 11 Nâng cao
Câu 5 trang 192 SGK Đại số và Giải tích 11 Nâng cao
Câu 5 trang 224 SGK Đại số và Giải tích 11 Nâng cao