Câu 5 trang 224 SGK Đại số và Giải tích 11 Nâng cao
Giải các phương trình sau :
Giải các phương trình sau :
LG a
\(2\sin \left( {x + 10^\circ } \right) - \sqrt {12} \cos \left( {x + 10^\circ } \right) = 3\)
Lời giải chi tiết:
\({a^2} + {b^2} = {2^2} + {\left( { - \sqrt {12} } \right)^2} = 16.\) Chia hai vế cho \(\sqrt {{a^2} + {b^2}} = 4\) ta được :
\(\eqalign{ & {1 \over 2}\sin \left( {x + 10^\circ } \right) - {{\sqrt 3 } \over 2}\cos \left( {x + 10^\circ } \right) = {3 \over 4} \cr & \Leftrightarrow \sin \left( {x + 10^\circ } \right)\cos 60^\circ - \sin 60^\circ \cos \left( {x + 10^\circ } \right) = {3 \over 4} \cr & \Leftrightarrow \sin \left( {x - 50^\circ } \right) = \sin \alpha \,\text{ với }\,\sin \alpha = {3 \over 4} \cr & \Leftrightarrow \left[ {\matrix{ {x - 50^\circ = \alpha + k360^\circ } \cr {x - 50^\circ = 180^\circ - \alpha + k360^\circ } \cr } } \right. \cr & \Leftrightarrow \left[ {\matrix{ {x = \alpha + 50^\circ + k360^\circ } \cr {x = 230^\circ - \alpha + k360^\circ } \cr } } \right. \cr} \)
LG b
\(\sqrt 3 \cos 5x + \sin 5x = 2\cos 3x\)
Lời giải chi tiết:
\(\eqalign{ & \sqrt 3 \cos 5x + \sin 5x = 2\cos 3x \cr & \Leftrightarrow {{\sqrt 3 } \over 2}\cos 5x + {1 \over 2}\sin 5x = \cos 3x \cr & \Leftrightarrow \cos 5x.\cos {\pi \over 6} + \sin 5x\sin {\pi \over 6} = \cos 3x \cr & \Leftrightarrow \cos \left( {5x - {\pi \over 6}} \right) = \cos 3x \cr & \Leftrightarrow \left[ {\matrix{ {5x - {\pi \over 6} = 3x + k2\pi } \cr {5x - {\pi \over 6} = - 3x + k2\pi } \cr } } \right.\cr & \Leftrightarrow \left[ {\matrix{ {x = {\pi \over {12}} + k\pi } \cr {x = {\pi \over {48}} + k{\pi \over 4}} \cr } } \right. \cr} \)
LG c
\({\sin ^2}x - 3\sin x\cos x + 2{\cos ^2}x = 0\)
Lời giải chi tiết:
* \(\cos x = 0 \) \(\Rightarrow \sin ^2 x = 1\) thay vào phương trình ta được: VT = 1 - 3.0 + 2.0 2 = 1 ( không thỏa mãn)
* Chia hai vế phương trình cho \({\cos ^2}x\) ta được :
\({\tan ^2}x - 3\tan x + 2 = 0 \) \(\Leftrightarrow \left[ {\matrix{ {\tan x = 1} \cr {\tan x = 2} \cr } } \right.\)
\(\Leftrightarrow \left[ {\matrix{ {x = {\pi \over 4} + k\pi } \cr {x = \arctan 2 + k\pi } \cr } } \right.\)