Câu 58, 59, 60, 61, 62, 63 trang 222, 223 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài tập trắc nghiệm khách quan - Chương V. Đạo hàm - To


Câu 58, 59, 60, 61, 62, 63 trang 222, 223 SGK Đại số và Giải tích 11 Nâng cao

Mỗi khẳng định sau đây đúng hay sai ?

Câu 58

Mỗi khẳng định sau đây đúng hay sai ?

a. Hàm số y = cotx có đạo hàm tại mọi điểm mà nó xác định

b. Hàm số \(y = \sqrt x \) có đạo hàm tại mọi điểm mà nó xác định

c. Hàm số y = |x| có đạo hàm tại mọi điểm mà nó xác định.

Lời giải chi tiết:

a. Đúng

b. Sai (vì hàm số \(t = \sqrt x \) không có đạo hàm tại x = 0)

c. Sai (vì hàm số \(y = \left| x \right|\) không có đạo hàm tại x = 0)

Câu 59

Tiếp tuyến của đồ thị hàm số \(y = {4 \over {x - 1}}\) tại điểm với hoành độ x = -1 có phương trình là

A. \(y = -x – 3\)

B. \(y = -x + 2\)

C. \(y = x – 1\)

D. \(y = x + 2\)

Lời giải chi tiết:

Ta có:

\(\eqalign{  & y\left( { - 1} \right) =  - 2  \cr  & y' =  - {4 \over {{{\left( {x - 1} \right)}^2}}} < 0;\forall x \ne 1 \cr} \)

\(y'(-1)=-1\)

Tiếp tuyến cần tìm là: \(y=-1.(x+1)-2\Rightarrow y=-x-3\)

Chọn A

Câu 60

Tiếp tuyến của đồ thị hàm số \(y = {1 \over {\sqrt {2x} }}\) tại điểm với hoành độ \(x = {1 \over 2}\) có phương trình là :

A. \(2x – 2y = -1\)

B. \(2x – 2y = 1\)

C. \(2x + 2y = 3\)

D. \(2x + 2y = -3\)

Lời giải chi tiết:

\(\eqalign{  & y' = {{ - 1} \over {2x\sqrt {2x} }}  \cr  & y\left( {{1 \over 2}} \right) = 1  \cr  & y'\left( {{1 \over 2}} \right) =  - 1 \cr} \)

Phương trình tiếp tuyến : \(y - 1 =  - 1\left( {x - {1 \over 2}} \right) \Leftrightarrow y =  - x + {3 \over 2}\)

Chọn C

Câu 61

Hàm số có đạo hàm bằng \(2x + {1 \over {{x^2}}}\) là :

A. \(y = {{{x^3} + 1} \over x}\)

B. \(y = {{{x^3} + 5x - 1} \over x}\)

C. \(y = {{3\left( {{x^2} + x} \right)} \over {{x^3}}}\)

D. \(y = {{2{x^2} + x - 1} \over x}\)

Lời giải chi tiết:

Ta có: \(y = {{{x^3} + 5x - 1} \over x} = {x^2} - {1 \over x} + 5 \)

\(\Rightarrow y' = 2x + {1 \over {{x^2}}}\)

Chọn B

Câu 62

Đạo hàm cấp 2010 của hàm số y = cosx là :

A. sinx

B. –sinx

C. cosx

D. –cosx

Lời giải chi tiết:

\(\eqalign{  & {\left( {\cos x} \right)^{\left( {4m} \right)}} = {\mathop{\rm cosx}\nolimits}   \cr  & {\left( {\cos x} \right)^{\left( {4n + 2} \right)}} =  - \cos x \cr} \)

Mà \(2010 = 4.502 + 2\) nên chọn D

Câu 63

Điền nội dung thích hợp vào chỗ trống.

a. Hàm số hợp của hàm số y = cotu và hàm số trung gian \(u = \sqrt x \) là y = …………….

b. Hàm số hợp của hàm số \(y = {u^n}\) và hàm số trung gian u = cosx + sinx là y = ………….

c. Hàm số y = tan3x là hàm số hợp của hàm số y = ………….. và hàm số trung gian u = ………….

d. Hàm số \(y = \sqrt {\cos x} \) là hàm số hợp của hàm số y = ………….. và hàm số trung gian u = ………….

Lời giải chi tiết:

a. \(\cot \sqrt x \)

b. \({\left( {\sin x + \cos x} \right)^n}\)

c. \(\tan u\,\text{ và }\,3x\)

d. \(\sqrt u \,\text{ và }\,\cos x\)


Cùng chủ đề:

Câu 57 trang 93 SGK Đại số và Giải tích 11 Nâng cao
Câu 57 trang 177 SGK Đại số và Giải tích 11 Nâng cao
Câu 57 trang 222 SGK Đại số và Giải tích 11 Nâng cao
Câu 58 trang 93 SGK Đại số và Giải tích 11 Nâng cao
Câu 58 trang 178 SGK Đại số và Giải tích 11 Nâng cao
Câu 58, 59, 60, 61, 62, 63 trang 222, 223 SGK Đại số và Giải tích 11 Nâng cao
Câu 59 trang 94 SGK Đại số và Giải tích 11 Nâng cao
Câu 59 trang 178 SGK Đại số và Giải tích 11 Nâng cao
Câu 60 trang 94 SGK Đại số và Giải tích 11 Nâng cao
Câu 60 trang 178 SGK Đại số và Giải tích 11 Nâng cao
Câu 61 trang 94 SGK Đại số và Giải tích 11 Nâng cao