Câu 60 trang 178 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Câu hỏi và bài tập ôn tập chương IV


Câu 60 trang 178 SGK Đại số và Giải tích 11 Nâng cao

Hàm số

Đề bài

Hàm số

\(f\left( x \right) = \left\{ {\matrix{{{{{x^3} + 8} \over {4x + 8}}\,\text{ với }\,x \ne - 2} \cr {3\,\text{ với }\,x = - 2} \cr} } \right.\)

Có liên tục trên \(\mathbb R\) không ?

Phương pháp giải - Xem chi tiết

Xét tính liên tục của hàm số tại x=-2 suy ra kết luận.

Lời giải chi tiết

Hàm số f liên tục tại mọi điểm \(x ≠ -2\) do khi \(x ≠ -2\) thì hàm số là hàm phân thức hữu tỉ nên liên tục trên khoảng xác định.

Với \(x ≠ -2\), ta có:

\(f\left( x \right) = {{{x^3} + 8} \over {4\left( {x + 2} \right)}} = {{\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)} \over {4\left( {x + 2} \right)}} \) \(= {{{x^2} - 2x + 4} \over 4}\)

Do đó \(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = \mathop {\lim }\limits_{x \to - 2} {{{x^2} - 2x + 4} \over 4} = 3 \)

\(f\left( { - 2} \right)=3=\mathop {\lim }\limits_{x \to - 2} f\left( x \right) \)

Vậy hàm số f liên tục tại \(x = -2\), do đó f liên tục trên \(\mathbb R\).


Cùng chủ đề:

Câu 58 trang 178 SGK Đại số và Giải tích 11 Nâng cao
Câu 58, 59, 60, 61, 62, 63 trang 222, 223 SGK Đại số và Giải tích 11 Nâng cao
Câu 59 trang 94 SGK Đại số và Giải tích 11 Nâng cao
Câu 59 trang 178 SGK Đại số và Giải tích 11 Nâng cao
Câu 60 trang 94 SGK Đại số và Giải tích 11 Nâng cao
Câu 60 trang 178 SGK Đại số và Giải tích 11 Nâng cao
Câu 61 trang 94 SGK Đại số và Giải tích 11 Nâng cao
Câu 61 trang 178 SGK Đại số và Giải tích 11 Nâng cao
Câu 62 trang 94 SGK Đại số và Giải tích 11 Nâng cao
Câu 62 trang 178 SGK Đại số và Giải tích 11 Nâng cao
Câu 63 trang 94 SGK Đại số và Giải tích 11 Nâng cao