Câu 62 trang 178 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Câu hỏi và bài tập ôn tập chương IV


Câu 62 trang 178 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng phương trình

Đề bài

Chứng minh rằng phương trình

\({x^4} - 3{x^2} + 5x - 6 = 0\)

Có ít nhất một nghiệm thuộc khoảng (1 ; 2).

Phương pháp giải - Xem chi tiết

Sử dụng định lý: Nếu hàm số f(x) liên tục trên đoạn [a;b] và \(f(a).f(b)<0\) thì tồn tại ít nhất một điểm c ( a ; b ) sao cho f(c)=0.

Lời giải chi tiết

Hàm số \(f\left( x \right) = {x^4} - 3{x^2} + 5x - 6\) liên tục trên đoạn \(\left[ {1;2} \right].\)

Ta có: \(f(1) = -3 < 0\) và \(f(2) = 8 > 0\)

Từ đó \(f(1).f(2) < 0\) nên theo hệ quả của định lí về giá trị trung gian của hàm số liên tục, tồn tại ít nhất một số thực \(c \in (1 ; 2)\) sao cho \(f(c) = 0\).

Số thực c là một nghiệm của phương trình đã cho.


Cùng chủ đề:

Câu 60 trang 94 SGK Đại số và Giải tích 11 Nâng cao
Câu 60 trang 178 SGK Đại số và Giải tích 11 Nâng cao
Câu 61 trang 94 SGK Đại số và Giải tích 11 Nâng cao
Câu 61 trang 178 SGK Đại số và Giải tích 11 Nâng cao
Câu 62 trang 94 SGK Đại số và Giải tích 11 Nâng cao
Câu 62 trang 178 SGK Đại số và Giải tích 11 Nâng cao
Câu 63 trang 94 SGK Đại số và Giải tích 11 Nâng cao
Câu 63 đến câu 71 trang 179 - 182 SGK Đại số và Giải tích 11 Nâng cao
Câu 64 trang 94 SGK Đại số và Giải tích 11 Nâng cao
Câu 65 trang 94 SGK Đại số và Giải tích 11 Nâng cao
Câu 66 trang 94 SGK Đại số và Giải tích 11 Nâng cao