Câu 9 trang 13 SGK Hình học 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Phép đối xứng trục


Câu 9 trang 13 SGK Hình học 11 Nâng cao

Cho góc nhọn

Đề bài

Cho góc nhọn xOy và một điểm A nằm trong góc đó. Hãy xác định điểm B trên Ox và điểm C trên Oy sao cho tam giác ABC có chu vi nhỏ nhất

Lời giải chi tiết

Xét tam giác bất kì ABC có B và C lần lượt nằm trên hai tia Ox và Oy.

Gọi A’ và A” là các điểm đối xứng với điểm A lần lượt qua các đường thẳng Ox và Oy.

Ta có \(AB = A’B\) và \(AC = A”C\) ( do các \(△ABA’\) và \(△ACA”\) là các tam giác cân).

Gọi \(2p\) là chu vi của tam giác ABC thì:

\(2p = AB + BC + CA \)\(= A’B + BC + CA” ≥ A’A”\)

Dấu “=” xảy ra khi bốn điểm \(A’, B, C, A”\) thẳng hàng.

Suy ra để chu vi tam giác ABC bé nhất thì phải lấy B và C lần lượt là giao điểm của đoạn thẳng A’A” với hai tia Ox và Oy (các giao điểm đó tồn tại vì góc xOy nhọn)


Cùng chủ đề:

Câu 8 trang 123 SGK Hình học 11 Nâng cao
Câu 8 trang 126 SGK Hình học 11 Nâng cao
Câu 8 trang 135 SGK Đại số và Giải tích 11 Nâng cao
Câu 8 trang 192 SGK Đại số và Giải tích 11 Nâng cao
Câu 8 trang 224 SGK Đại số và Giải tích 11 Nâng cao
Câu 9 trang 13 SGK Hình học 11 Nâng cao
Câu 9 trang 17 SGK Đại số và Giải tích 11 Nâng cao
Câu 9 trang 35 SGK Hình học 11 Nâng cao
Câu 9 trang 50 SGK Hình học 11 Nâng cao
Câu 9 trang 63 SGK Đại số và Giải tích 11 Nâng cao
Câu 9 trang 80 SGK Hình học 11 Nâng cao