Câu 9 trang 35 SGK Hình học 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Ôn tập chương I


Câu 9 trang 35 SGK Hình học 11 Nâng cao

Cho đường tròn (O ; R)

Đề bài

Cho đường tròn (O ; R) và điểm A cố định. Một dây cung BC thay đổi của (O ; R) có độ dài không đổi BC = m. Tìm quỹ tích các điểm G sao cho \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)

Lời giải chi tiết

Gọi I là trung điểm của BC thì \(OI\bot BC\)

Ta có

\(\eqalign{ & \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \cr & \Leftrightarrow \overrightarrow {GA} + 2\overrightarrow {GI} = \overrightarrow 0 \cr & \Leftrightarrow \overrightarrow {AG} = {2 \over 3}\overrightarrow {AI} \cr} \)

Tức là phép vị tự V tâm A tỉ số \({2 \over 3}\) biến điểm I thành điểm G

Trong tam giác vuông OIB ta có:

\(OI = \sqrt {O{B^2} - I{B^2}} \)\(= \sqrt {{R^2} - {{\left( {{m \over 2}} \right)}^2}} = R'\) (không đổi)

Nên quỹ tích I là đường tròn (O ; R’) hoặc là điểm O (nếu m = 2R)

Do đó quỹ tích G là ảnh của quỹ tích I qua phép vị tự V


Cùng chủ đề:

Câu 8 trang 135 SGK Đại số và Giải tích 11 Nâng cao
Câu 8 trang 192 SGK Đại số và Giải tích 11 Nâng cao
Câu 8 trang 224 SGK Đại số và Giải tích 11 Nâng cao
Câu 9 trang 13 SGK Hình học 11 Nâng cao
Câu 9 trang 17 SGK Đại số và Giải tích 11 Nâng cao
Câu 9 trang 35 SGK Hình học 11 Nâng cao
Câu 9 trang 50 SGK Hình học 11 Nâng cao
Câu 9 trang 63 SGK Đại số và Giải tích 11 Nâng cao
Câu 9 trang 80 SGK Hình học 11 Nâng cao
Câu 9 trang 96 SGK Hình học 11 Nâng cao
Câu 9 trang 105 SGK Đại số và Giải tích 11 Nâng cao