Câu 9 trang 105 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 2. Dãy số


Câu 9 trang 105 SGK Đại số và Giải tích 11 Nâng cao

Tìm 5 số hạng đầu

Tìm 5 số hạng đầu của mỗi dãy số sau :

LG a

Dãy số (u n ) với \({u_n} = {{2{n^2} - 3} \over n}\)

Lời giải chi tiết:

Ta có

\(\eqalign{ & {u_1} = {{{{2.1}^2} - 3} \over 1} = - 1 \cr & {u_2} = {{{{2.2}^2} - 3} \over 2} = {5 \over 2} \cr & {u_3} = {{{{2.3}^2} - 3} \over 3} = 5 \cr & {u_4} = {{{{2.4}^2} - 3} \over 4} = {{29} \over 4} \cr & {u_5} = {{{{2.5}^2} - 3} \over 5} = {{47} \over 5} \cr} \)

LG b

Dãy số (u n ) với  \({u_n} = {\sin ^2}{{n\pi } \over 4} + \cos {{2n\pi } \over 3}\)

Lời giải chi tiết:

\(\eqalign{ & {u_1} = {\sin ^2}{\pi \over 4} + \cos {{2\pi } \over 3} \cr& = {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} + \left( { - \frac{1}{2}} \right)= {1 \over 2} - {1 \over 2} = 0 \cr & {u_2} = {\sin ^2}{\pi \over 2} + \cos {{4\pi } \over 3} \cr&= {1^2} + \left( { - \frac{1}{2}} \right)= 1 - {1 \over 2} = {1 \over 2} \cr & {u_3} = {\sin ^2}{{3\pi } \over 4} + \cos 2\pi \cr& = {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} + 1= {1 \over 2} + 1 = {3 \over 2} \cr & {u_4} = {\sin ^2}\pi + \cos {{8\pi } \over 3} \cr& = {0^2} + \cos \left( {2\pi  + \frac{{2\pi }}{3}} \right) \cr& = 0+\cos \frac{{2\pi }}{3} = - {1 \over 2} \cr & {u_5} = {\sin ^2}{{5\pi } \over 4} + \cos {{10\pi } \over 3} \cr& = {\sin ^2}\left( {\pi  + \frac{\pi }{4}} \right) + \cos \left( {4\pi  - \frac{{2\pi }}{3}} \right) \cr&= {\left( { - \sin \frac{\pi }{4}} \right)^2} + \cos \left( { - \frac{{2\pi }}{3}} \right) \cr&= {\left( { - \frac{{\sqrt 2 }}{2}} \right)^2} + \left( { - \frac{1}{2}} \right)= {1 \over 2} - {1 \over 2} \cr&= 0 \cr} \)

LG c

Dãy số (u n ) với  \({u_n} = {\left( { - 1} \right)^n}.\sqrt {{4^n}} \)

Lời giải chi tiết:

\(\begin{array}{l} {u_1} = {\left( { - 1} \right)^1}\sqrt {{4^1}} = - 2\\ {u_2} = {\left( { - 1} \right)^2}\sqrt {{4^2}} = 4\\ {u_3} = {\left( { - 1} \right)^3}\sqrt {{4^3}} = - 8\\ {u_4} = {\left( { - 1} \right)^4}\sqrt {{4^4}} = 16\\ {u_5} = {\left( { - 1} \right)^5}\sqrt {{4^5}} = - 32 \end{array}\)


Cùng chủ đề:

Câu 9 trang 35 SGK Hình học 11 Nâng cao
Câu 9 trang 50 SGK Hình học 11 Nâng cao
Câu 9 trang 63 SGK Đại số và Giải tích 11 Nâng cao
Câu 9 trang 80 SGK Hình học 11 Nâng cao
Câu 9 trang 96 SGK Hình học 11 Nâng cao
Câu 9 trang 105 SGK Đại số và Giải tích 11 Nâng cao
Câu 9 trang 123 SGK Hình học 11 Nâng cao
Câu 9 trang 126 SGK Hình học 11 Nâng cao
Câu 9 trang 135 SGK Đại số và Giải tích 11 Nâng cao
Câu 9 trang 192 SGK Đại số và Giải tích 11 Nâng cao
Câu 9 trang 224 SGK Đại số và Giải tích 11 Nâng cao