Câu 9 trang 192 SGK Đại số và Giải tích 11 Nâng cao
Tính đạo hàm của mỗi hàm số sau :
Tính đạo hàm của mỗi hàm số sau :
LG a
y=12x−1 với x≠12
Phương pháp giải:
Sử dụng công thức f′(x0)=lim
Lời giải chi tiết:
Đặt f(x)=y = {1 \over {2x - 1}}
Với {x_0} \ne {1 \over 2} ta có:
\eqalign{ & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{{1 \over {2{x_0} + 2\Delta x - 1}} - {1 \over {2{x_0} - 1}}} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{ - 2\Delta x} \over {\Delta x\left( {2{x_0} + 2\Delta x - 1} \right)\left( {2{x_0} - 1} \right)}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{ - 2} \over {\left( {2{x_0} + 2\Delta x - 1} \right)\left( {2{x_0} - 1} \right)}} \cr & = {{ - 2} \over {{{\left( {2{x_0} - 1} \right)}^2}}} \cr}
LG b
y = \sqrt {3 - x} với x < 3.
Lời giải chi tiết:
Đặt f(x)=y = \sqrt {3 - x}
Với x 0 < 3, ta có:
\eqalign{ & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{\sqrt {3 - {x_0} - \Delta x} - \sqrt {3 - {x_0}} } \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{3 - {x_0} - \Delta x - 3 + {x_0}}}{{\Delta x\left( {\sqrt {3 - {x_0} - \Delta x} + \sqrt {3 - {x_0}} } \right)}} \cr &= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{ - \Delta x}}{{\Delta x\left( {\sqrt {3 - {x_0} - \Delta x} + \sqrt {3 - {x_0}} } \right)}}\cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{ - 1} \over {\sqrt {3 - {x_0} - \Delta x} + \sqrt {3 - {x_0}} }} \cr &= {{ - 1} \over {2\sqrt {3 - {x_0}} }} \cr}